

Critical Reviews in Environmental Science and Technology

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/best20</u>

Crow Water Treatment System

Grey Water Treatment Systems: A Review

Lina Abu Ghunmi^{a b}, Grietje Zeeman^b, Manar Fayyad^a & Jules B. van Lier^{b c}

^a University of Jordan, Water and Environment Research and Study Center, Amman, Jordan

^b Wageningen University, Department of Agrotechnology and Food Sciences, Subdepartment of Environmental Technology, Wageningen, The Netherlands

^c Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, Section Sanitary Engineering, Delft, The Netherlands Published online: 14 Mar 2011.

To cite this article: Lina Abu Ghunmi , Grietje Zeeman , Manar Fayyad & Jules B. van Lier (2011) Grey Water Treatment Systems: A Review, Critical Reviews in Environmental Science and Technology, 41:7, 657-698, DOI: <u>10.1080/10643380903048443</u>

To link to this article: <u>http://dx.doi.org/10.1080/10643380903048443</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Grey Water Treatment Systems: A Review

LINA ABU GHUNMI,^{1,2} GRIETJE ZEEMAN,² MANAR FAYYAD,¹ and JULES B. van LIER^{2,3}

¹University of Jordan, Water and Environment Research and Study Center, Amman, Jordan ²Wageningen University, Department of Agrotechnology and Food Sciences, Subdepartment ^{of} Environmental Technology, Wageningen, The Netherlands

³Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, Section Sanitary Engineering, Delft, The Netberlands

This review aims to discern a treatment for grey water by examin-ing grey water characteristics, reuse standards, technology perfor-mance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a small particle size and convert organic matter to mineralized compounds. For efficient, simple and afford-able treatment of grey water with safe effluent reuse, a combined anaerobic-aerobic process is recommended, with disinfection being an optional step. The removal and subsequent conversion of sus-pended and colloidal particles in the anaerobic process need further improvement. Furthermore, the reuse standards should be revised and classified considering the reuse options and requirements.

KEY WORDS: biological, chemical, grey water, physical, reuse, standards, treatment technologies

1 INTRODUCTION

Water shortage and water pollution have become global issues; related issues are scarcity of water resources, mismanagement, population growth, and climate change (Arnell, 1999; Bouwer, 2000; Falkenmark, 1990). Industrial and clomestic water waters' constituents contribute to water treatment soight 2000; Water and Eddy, 2003). Wastewater treatment and recycling

of useful products (i.e., water, nutrients, and organic matter) mitigates water shortages and environmental pollution. To maximize the possibility of recycling and minimize the energy required for treatment, industrial and domestic wastewaters have been separately treated (Metcalf and Eddy, 2003), and source separation of domestic wastewaters into grey and black waters has been promoted (Otterpohl et al., 1999; Otterpohl et al., 2003; Zeeman and Lettinga, 1999). Excluding toilet (black water) and sometimes kitchen streams, grey water combines one or more of less polluted domestic wastewater streams (Christova-Boal et al., 1995; Eriksson et al., 2002; Jefferson et al., 1999; Otterpohl et al., 1999).

Grev water contribution to domestic wastewater is 60-75% of the water volume (Gulyas and Raj Gajurel, 2004), and includes 9-14%, 20-32%, 18-22%, and 29-62% of N, P, K, and organic matter, respectively (Kujawa-Roeleveld and Zeeman, 2006). Several issues emerge with grey water. First is reuse with or without simple treatment (Al-Javyousi, 2002; Christova-Boal et al., 1995). Second is recycling for indoor use, such as flushing toilets, washing clothes, and bathing (e.g., Bingley, 1996; Christova-Boal et al., 1995; Cui and Ren, 2005; Jefferson et al., 1999, 2001; Li et al., 2003; Nolde, 1999; Shrestha et al., 2001a, 2001b), and for outdoor use, such as irrigating domestic gardens, lawns on college campuses, athletic fields, cemeteries, parks and golf courses; washing vehicles and windows; extinguishing fires; feeding boilers; developing and preserving wetlands; and recharging groundwater (e.g., Al-Jayyousi, 2002, 2003; Bingley, 1996; Christova-Boal et al., 1995; Eriksson et al., 2002; Fittschen and Niemczynowicz, 1997; Jefferson et al., 2001; Nolde, 1999; Okun, 2000; Otterpohl, 1999; Shrestha et al., 2001a, 2001b). Third, standards are mainly related to health and social aspects in order to improve the control of the recycling process (e.g., Cui and Ren, 2005; Jefferson et al., 1999, 2000, 2001; Li et al., 2003; Nolde, 1999). Fourth is the obtaining of affordable treatment technologies to cope with the quantity and quality variation of grey water sources (Eriksson et al., 2002; Imura et al., 1995), and the recycling requirements (e.g., Cui and Ren, 2005; Jefferson et al., 1999, 2000, 2001; Li et al., 2003; Nolde, 1999). A wide range of treatment technologies have been applied and examined for grev water and considering one or more of the grey water issues, producing effluents with different qualities. In this review, therefore, we examine various grey water treatment technologies with the aim of coming up with an efficient, simple, and affordable treatment system with safe effluent for use. A treatment system is considered efficient if it produces the required effluent quality, simple in operation with a minimum maintenance, and affordable due to its low energy consumption and low operational and maintenance costs. Safe effluent refers to a situation where the possibility of pathogens regrowth is minimal. The issues considered in the selection of grey water treatment systems are grey water characteristics, used standards, technology performance, and costs.

2 GREY WATER CHARACTERISTICS AND USE STANDARDS

Raw grey water treatment is a prerequisite for storage and use. The aim of treatment is to overcome esthetic, health and technical problems, which are caused by organic matter, pathogens and solids, and to meet reuse standards. Raw grey water pollutants, measured as COD, have an anaerobic and aerobic biodegradability of respectively 72-74% (Elmitwalli and Otterpohl, 2007; Zeeman et al., 2008) and $84 \pm 5\%$ (Zeeman et al., 2008). Furthermore, 27-54% is dissolved, 16-23% colloidal, and 28-50% suspended (Elmitwalli and Otterpohl, 2007; Zeeman et al., 2008). Grey water can contain recalcitrant organic matter (Friedler et al., 2006; Hernandez et al., 2007). For example, anionic and cationic surfactants are slow or nonbiodegradable under anaerobic conditions (Garcia et al., 1999; Matthew and Malcolm, 2000). Storing grey water for 48 hr at 19–26°C deteriorates its quality (Dixon et al., 1999), and biological degradation produces malodorous compounds, causing an aesthetic problem (Christova-Boal et al., 1995; Dixon et al., 1999), pathogens breeding (Christova-Boal et al., 1995; Dixon et al., 1999; Rose et al., 1991) and mosquito breeding (Christova-Boal et al., 1995), which are a health threat. Use of raw grey water clogs the recycling system due to buildup of suspended material and/or the biological growth in the systems (Christova-Boal et al., 1995). Raw grey water quality characteristics do not comply with the standards (Table 1). Treatment is therefore required (Eriksson et al., 2002) and the treatment level depends on the reuse options (Pidou et al., 2007). A biological treatment system is appropriate for stabilizing the organic matter (Jefferson et al., 1999, 2004; Nolde, 1999).

Grey water treatment does not aim at providing water of drinking water quality but at water for toilet flushing, laundry, lawn irrigation, windows and car washing, groundwater discharge, or fire extinguishing (e.g., Eriksson et al., 2002; Jefferson et al., 1999). The adopted standards (Table 1) for use of grev water are originally for reclaimed domestic (grev + black) wastewater. The adopted standards almost resemble drinking water quality and do not consider significant variation in the qualities required for different use options. The standards also ignore the presence of resources such as nutrients. For instance, the standards for turbidity and nitrogen content of respectively <2 NTU and 30 mg N L⁻¹ are lower than the World Health Organization (WHO) guidelines for drinking water quality; nondetectable Fecal Coliform (FC) and Total Coliform (TC) are lower than bathing water standards in the United Kingdom. Furthermore, China created differentiated standards (e.g., for toilet flushing, car cleaning, lawn irrigation), but the variation of standards for the different uses is only minor. Moreover, the standards for domestic water recycling prevailing in various countries (Table 1) are neither uniform nor globally standardized. Development of multicategory standards is required for an optimal use of grey water. The standards should include

Standards	Turbidity NTU	$\underset{mg\ L^{-1}}{BOD_{5}}$	$\underset{mg \ L^{-1}}{\text{cod}}$	$\underset{mg \ L^{-1}}{\text{SS}}$	$\underset{L^{-1}}{\overset{N}{\operatorname{mg}}}$	$\Pr_{L^{-1}}$	Hq	TC CFU/ 100 mL	FC CFU/ 100 mL	EC CFU/ 100 mL	References
USA-EPA											U.S. EPA (2004)
Unrestricted use ^a Restricted use ^b	7	√ 10 20 0	I	< 30			6-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		<pre>ND <200</pre>		
OHW		Ì		1			х Э)) 		WHO (2001)
Restricted irrigation								<pre><1E5</pre>	I		
Unrestricted irrigation ² Drinking quality ^d	Ý				50		6.5-8.5	<u>_1E5</u>			
UK—Bathing water	Ì				1			$5E2^{g}-1E4^{m}$	1E2 ^g -2E3 ^m		Parker and Frost
					d						(2000)
				China							China (2002)
Toilet flushing	ı∿	10			10		69			0.3	
Cleaning car	10	15			10		6-9			0.3	
Lawn irrigation	10	20			20		69			0.3	
Japan											Ogoshi et al. (2001)
Toilet flushing							5.8-8.6	≤ 1000			1
Landscape irrigation							5.8-8.6	QN			
Jordan											Jordan (2002)
Recharge aquifer	2	15	50	50	30	15	69		<2.2	<2.3	
Unrestricted irrigation ^f	10	30	100	50	45		69		100	101	
<i>Note</i> . ND = not detectable: g	= guideline	es: m = m;	andatory.								
^a urhan uses crons eaten raw	recreation:	al impound	1ments.								
^b restricted access area irrigati	on. process	ed food cr	ops, nonfc	od crops.	aestheti	c impou	ndments.	construction (uses, industrial	cooling and	l environmental reuse

^ccrops eaten raw.

^ddrinking water quality, 1993.

^eNitrogen are for ammonia measurements. ^firrigation of vegetables (to be cooked before consumption), parks, playgrounds, and roadsides or roads within city limits.

different aspects such as health, aesthetic, and environment. For instance, the WHO (2006) guidelines for use of grey water have two categories, restricted and unrestricted irrigation. Furthermore, it is recommended to combine grey water use standards with guidelines for safe practice (e.g., the maximum retention time in the toilet cistern). The WHO (2006) guidelines for reuse of grey water for irrigation are combined with guidelines for safe practice (e.g., applying drip irrigation techniques, covering the soil with mulch, avoiding contact with wet soil).

3 GREY WATER TREATMENT SYSTEMS

A grey water treatment system consists of different treatment steps that may be considered, depending on the required quality of the effluent (Figure 1). Several treatment technologies can be used in each step. Technologies examined for treating grey water are classified based on the treatment principle: physical, biological, chemical, or a combination of these. Furthermore, the technologies are reviewed in terms of performance, operation, and the encountered problems.

3.1 Filtration and Physiochemical Processes

Several types of macro- and membrane-filtration units for grey water treatment have been tested. The tested macrofiltration units include a strainer series with pore size ≥ 0.17 mm, nylon sock-type filters, geotextile (filter sock) filters, fibrous (cloth) filters, coarse filters (CF), and sand filters (SF; Al-Jayyousi, 2003; Christova-Boal et al., 1995; Friedler et al., 2006; Jefferson et al., 1999). The tested membrane-filtration units, sheet or tubular, were (a) microfilter 0.1 μ m Membrane Fibrous Filters (M[F]F; Ahn et al., 1998) and $\leq 0.2 \ \mu$ m M(F)F (Shin et al., 1998); (b) 300 kDa Ultra Fibrous Filter (U[F]F; Ahn et al., 1998), 4, 6, and 200 kDa MWCO U(F)F (Hills et al., 2001), and 30, 200, and 400 kDa MWCO UF (Ramon et al., 2004). The pore size of the UF of Cui and Ren (2005) was not reported, and Nghiem et al. (2006) tested 0.045 μ m submerged U(F)F. Last, 75, 80, and 90% CaCl₂ rejection

FIGURE 1. Gray water recycling and treatment possible steps and tracks.

Nano Fibrous filter (N(F)F) (Hills et al., 2001) and 200 Da MWCO \cong 75% CaCl₂ rejection (Ramon et al., 2004).

The efficiency of the filtration techniques depends on the particle size distribution of grey water pollutants and the filters' porosity; in general the smaller the filters' porosity the better the effluent quality (Table 2). Ahn et al. (1998) reported that the pore size of the tested membrane filters has marginal effect on the treatment efficiency of grey water; the reason being that the average particle size of tested grey water was 2.18 μ m, while membranes with a pore size of 0.1 μ m, 300 and 15 kDa were tested. In contrast, Ramon et al. (2004) reported better effluent qualities produced by N(F)F as compared with UF; the underlying reason is the presence of organic matter with low molecular weight in grey water that cannot be rejected by UF. Table 2 also shows that the U(F)F effluent quality (BOD) reported by Hills et al. (2001) is better than the quality of the MF effluent as reported by Jefferson et al. (1999). This is also in agreement with Nolde (1999), who reported replacing ultrafiltration and reverse osmosis by 0.2 μ m membrane eliminates the microorganism but hardly reduces the BOD. None of the examined filters, presented in Table 2, have been tested for nutrients removal of nitrogen (N) and phosphorous (P).

Filtering raw grey water, whatever its quality, through macrofilters reduces blockages in the recycling system (Christova-Boal et al., 1995; Jefferson et al., 1999). However, macrofiltration units, except sand filters, show no absolute barrier for the suspended pollutants, and the chemical nature of grey water in terms of organic load and turbidity remains almost unaltered, thereby promoting biological growth (Christova-Boal et al., 1995; Jefferson et al., 1999). In addition to the filter effluent quality problems, filters produce unstable primary sludge that needs further treatment. Also, the primary sludge residence time in the filter affects the filter effluent qualities. Thus, the smaller the pore size and the shorter the primary sludge residence time, the better and the more stable the effluent quality. Meanwhile, the previously mentioned small pore size and shorter sludge residence time increase fouling and operational costs and cleaning frequency. Treating grey water's BOD, COD, and pathogens by filters as main treatment units is not recommended.

Filters face a number of operational problems, such as the cleaning frequency of macrofiltration units, which may vary from once after each use to once per week (Christova-Boal et al., 1995; Friedler et al., 2006; Jefferson et al., 1999). Effluent qualities in terms of organic content and turbidity cause periodical failures of disinfection by halogen compounds (Jefferson et al., 1999), which have the affinity to react with the organic matter. Operation over extended time periods (no time value given) of membrane filters in microfiltration units can result in anaerobic conditions of the grey water (Jefferson et al., 1999) and generate organic components that are less readily rejected by the membrane (Holden and Ward, 1999). Nghiem et al. (2006), using a "<0.04 μ m" U(F)F membrane unit, reported an increased thickness

TABLE 2. Fi	lters or Physi	icoch	emical Units T	reating	Grey Wa	ter; Infl	uent and	l Effluent (Qualities and 6	Operation Cor	nditions	
	BOD mg L ⁻	-	COD mg L ⁻¹	SS	Turbidity	N bu	P bu	FC CFU/100				
Treatments	BOD _{tot} BOE	D _{dis}	CODtot CODdis	с-1 Г_1	NTU	r_1	c_1_1	mL	Chemical	Energy	Cost	References
CF +Disinfectio	ac					W	lacrofilter	S			Moderate installation	
GW-Source	Single house g. Metal strainer	grey wa	ater; Bath/shower, w main feature a sh	washbasi bort HRT	in, laundry (no specific	time aive	(4				cost 500 to 1000 &, 8 vears nav hack	et al., 1999
Disinfection	Chlorine or bro	omine	dispensed in a sm	non run all releas	e block or d	unue grue osed in li	iquid soluti	uo	Chlorine or		period for	
Influent Effluent	>50					\$	1		bromine dispensed		four-person house hold	٤,
SF Influent	33		143		44.5							Jetterson et al.,
Effluent ST+ Back-	12 Collection tank	's follor	35.7 wed by Automatic	hackwas	32.3 hing sand fil	er follov	wed hv stor	age tank				1999 Al-Iawwonsi
washing SF			wear of manage		ni princ gini			age taut				et al., 2003
GW-Source Influent	Grey water ger 1500	merated	d by rural houses	in Ain Al- 316	Badia, Tafile	h govern	orate, Jord	an.				
Effluent Equalization basin+ SF	392 1 mm fine scre	sen fol.	lowed by equaliza	189 tion basir	t followed b	y sand fil	ter.					Friedler et al.,
GW-Source Equalization basin	Bath, shower, : Preceding Equi	and w Ializatic	ashbasin streams c on Basin there was	lischarge s 1 mm sc	from seven a juare shapeo	student a l screen t	partments to remove	at Technion c gross solids. E	ampus; accommo B volume 330 L n	date married stud naximum residen	ents ce time is 10 hr	2006a
Effluent	69 (33) 36 (2	20) 1	08 (47) 211 (141)	92 (115)	(65 (68)		ŝ	.4E5 (4.2E5)				
SF	Gravity filter, d operated int	diametot	er 10 cm and 70 c ently 11 time a day	m media ys, 15 mir	depth; the m n each time,	edium co the filtrat	onsists of q ion velocit	uartz and san y is 8.33 m hr	d, porosity 36%, a ⁻¹ , back washed v	und supported by weekly after filtra	5 cm gravel, the filter tion of 1.26 m^3 .	
Effluent	62 (21) 40 ((2) 8	37 (28) 130 (37)	32 (13)	35 (25)		1	.3E5 (1.4E5)				
M(F)F	Volume 20 m ³ ,	, meml	brane hollow fiber	: polyprol	olyne with 0	Ν 2 μm no	Aicrofilter minal pore	s size. Air autc	matic backwashir	ng and chemical f	or cleaning after long	Shin et al., 1008
GW-Source Influent Effluent	operauon Japanese Offico	ze builc	ling; Cooking, bat	hing, was 19–113 around	hing							0//1
				1							(Continuea	on next page)

663

	BOD mg	$3 \ L^{-1}$	COD m	lg L ⁻¹	SS		z	Ч	FC				
eatments	BOD _{tot} B	30D _{dis}	CODtot	COD _{dis}	L ⁻¹	UTU NTU	L^{-1}	Γ^{-1}	CrU/100 mL	Chemical	Energy	Cost	References
IF or UF	Fibrous me	ambrane,	, ultra filtei	rs, appliec	d pressur	e up to 2 bar				Chemical for	Substantially	low organic load	Jefferson
W-Source	33		143			44.5 0.37			Š	cleaning the fouling	higher than depth filters	reduces energy demand but	et al., 1999
Illuent W/-Source	ſ		7.77			0.54			-0-			increases overall	
w-source	25-185		86-410			12 - 100			2E0-3.1E5 ^b			1001	
ffluent	1–19		21-112			~ 7			ND-2.4E3 ^b				
cy (F)F (different	Membrane	rig cons	tisted of siz	x single tu	thes with	ı a total mem	ıbrane are	a 0.22 m ²	² , and operate	d on the batch m	ode.		Hills et al., 2001
types)													
W-Source	Artificial Gr Polyvinyslic	rey wate denofluc	rr; mimicki oride	ng grey w	vater disc	tharge from t	nand basi	ns and tre	ated in BAF				
kDa													
fluent fluent	20–25 11	α α											
WCO 6 kDa	Modified pc	olvether	sulphone										
fluent	20-25	6–10	-										
fluent	Ś	Ś											
WCO 4 KDa	Tight polye	ethersulf	ohone										
fluent	6	l S											
5% CaCl ₂	Polyamine 1	film											
rejection													
fluent	20-25	6-10											
fluent	ŝ	3											
0% CaCl ₂	Polyamine	film											
rejecuon fluent	20-25	6-10											
fluent	5	5											
% CaCl ₂	Cellulose ac	cetate											
rejection													
fluent	20-25	6 - 10											
fluent	Ś	s, v											
rey water	sport centre	e from p	oublic shov	ver of the									Ramon et al.,
source	e e	- 1		-			1.1.1.			- +			2004
(F)F	Polyacrium	ntnie (r.	ANJ memo	rane snec	it, appuei	d pressure 1-	-2 Dar, un	e moaure	dimension IV	JU and ou mm, uic	outer and inner	diameter	

MWCO rejects	400 kDa						
Influent		80 (21.5)			1.4(0.4)		
% removal		45			92		
MWCO rejects	200 kDa						
Influent		74 (28.6)			1 (0.5)		
% removal		49			94		
MWCO rejects	30 kDa						
Influent		50.6 (6.6)			0.8 (0.2)		
% removal		69			97		
grey						-	
N(F)F	Tubular nanofilter	30 cm lengtl	h, 1.25 inr	ner diamet	er, and 0.014 m ² filtration area, applied pre	ssure $6-10$ bar, cross flow filtration unit, 150 L hr ⁻¹	Ramon et al.,
operation COMM	now rate						2004
	200 Da	200		(
Influent		220		. 4	29.5 (0.6)		
% removal		95			98		
Filysicochemic	al processes						
Coagulation	Coagulant dosage	is 30 mg L ⁻¹	of FeCl ₃				Jefferson
Induced	100				30 4		et al., 1999
Effluent	100				1) (7 1 / C		
Emuent					2:41		
Oxidation	Oxidant dosage is	$2 g L^{-1}$ of T	iO ₂ activa	ted by UV	radiation		
IIIInciii					(776		
E.C		2000			denn		
EIIIUCIII		50 C7			IND		
		(100)					
Multiple	Grey water treated	1 subsequent	ly in Coag	gulation ui	it, sand filter, adsorber, UF, and UV disinfe	sction.	Cui and Ren,
pnysico-							5002
units							
Coagulation	Coagulant tested A	M ₂ (SO ₄)₃. Fe	Cla. PAC.	and PFS	were tested using 20 and 40 mg L^{-1} dosage	; the optimum coagulant and dosage were 20 mg L^{-1} PFS	
Adsorber	Activated carbon 5	und with opti	mum flow	v velocity	10 m hr ⁻¹		
UF	Optimum operatin	ig pressure 0.	.1 bar				
UV	Dosage 250 mj cm	1-2					
GW-Source	Shower						
Influent		63	7.2	39	35		
Effluent		1.2	6.8	0	0.15		
GW-Source	Bath						
Influent		137	7.3	81	75		
Effluent		1.6	6.7	0	0.15		
GW-Source	Mixed						
Influent		86	7.3	55	61		
Effluent		1.3	6.8	0	0.14		
^a E. coli.							

^bTC = total coliform; ND = not detectable. ^cTOC = total organic carbon.

665

of the cake layer at increased particulate organic matter concentrations. The hydraulic resistance and fouling was worsened by the humic acids content, and the presence of calcium may even increase that effect (Nghiem et al., 2006). Increased hydraulic resistance leads to more energy consumption for the membrane permeation (Jefferson et al., 1999). A general aspect of ultrafiltration is a very high energy demand (Nolde, 1999), and MWCO needs optimization for economics and permeate quality (Ramon et al., 2004).

The pretreatment of raw grey water in storage and settling tanks mitigates partially the clogging problems of sand filters and could replace the coarse filter. However, the same amount of unstable primary sludge is still produced in addition to the increase in the total volume of the treatment system. Moreover, the hydraulic and sludge residence time of the pretreatment tank should be optimized to prevent deterioration of its effluent quality (Imura et al., 1995; Shrestha et al., 2001a, 2001b). Adding coagulants such as AL_2 (SO₄)₃, FeCl₃, polyaluminium chloride, and PFS in combination with mixing enhances the performance of the pretreatment tank (Cui and Ren, 2005). Application of physicochemical processes, as shown by Pidou et al. (2007), is promising for grey water treatment, certainly when considering the short hydraulic retention time (HRT; <1 hr) that can be applied. However, more primary sludge is produced, resulting in an increase in operational costs. Different types of posttreatment units have been used to enhance the filters' effluent turbidity, suspended solids, organic matter, or pathogens qualities. The tested units (Table 2) are Ultra Membrane Filtration (Cui and Ren, 2005; Hills et al., 2001), Activated Carbon Absorber and Ultraviolet radiation (Cui and Ren, 2005), and disinfection by halogens (Al-Jayyousi, 2002; Christova-Boal et al., 1995). From the latter unit the effluent quality was not reported, while the rest produced effluents that complied with the most conservative turbidity, SS, and pathogens standards (Table 1). Therefore, membrane filtration (i.e., micro-, ultra-, and nanofilters) could be an option for posttreating grey water to achieve the most conservative standards.

3.2 Modified Filters

Filters' performances have been improved by modifying the operational conditions, such as flow direction, HRT, and planting the filter media (i.e., constructed wetlands). Also, filters are developed that combine two types of treatment in the same unit, namely, biofilters combining physical and biological processes, and chemfilters combining physical and chemical processes.

3.2.1 Soil Filters and Constructed Wetlands (CW)

The tested filters can be classified into two categories: unplanted and planted filters. Each category is subclassified according to the tested flow directions. Unplanted filters are Intermittent Vertical-Flow Soil Filter (IVSF; Nolde and Dott, 1992), Subsurface Flow Filters (SSrF; Dallas et al., 2005), Slanted Soil

system (SSo; Itayama et al., 2006); and Recycled Vertical Flow Bioreactor (RVFB; Gross et al., 2007a). Planted filters are Intermittent Vertical-Flow Planted Soil Filter (IVPSF), Horizontal-Flow Planted Soil Filter (HPSF; Hegemann, 1993), and planted Subsurface Filter (SSrF; Dallas et al., 2005), Recycled Vertical Flow Constructed Wetlands (RVFCW; Gross et al., 2007b), and Green Roof Water Recycling System (GRWRS; Winward et al., 2008). The first four planted filters are also called root-zone facilities, or Vertical, Horizontal, and Subsurface Constructed Wetlands (V-CW, H-CW, SSr-CW; Fittschen and Niemczynowicz, 1997; Li et al., 2003; Otterpohl et al., 1999) or (V-, H- and SSr-) Reedbed (Dallas et al., 2005; Winward et al., 2008), respectively.

Performance tests (Table 3) for IVSF, SSrF, RVFB, H-CW, V-CW, SSrF-CW, and GRWRS show that the tested units' effluent qualities, BOD, COD, SS turbidity, and pathogens are better than that of macrofilters (Table 2). In addition, CWs and RVFCW show capacity in treating nitrogen and phosphorous. The overall treatment performance could be improved by applying less porosity, longer HRT, and introducing plants or applying vertical flow (Table 3). Moreover, as shown in Table 3, H-CW (Fittschen and Niemczynowicz, 1997), V-CWs (Shrestha et al., 2001a, 2001b; Winward et al., 2008), SSrF-CW (Dallas et al., 2005), and GRWRS (Winward et al., 2008) produce effluent qualities in terms of BOD that comply with all standards (Table 1). The main feature of the well performing CW reported by of Fittschen and Niemczynowicz (1997) and Dallas et al. (2005) is the long HRT, 14, and 5.1-8.5 days, respectively, compared with other tested systems (Tables 2, 4-7). The tested systems (Table 3) show different capacities in treating pathogens according to differences in their internal structure and the applied HRT. However, none of the effluents comply with all standards with regard to pathogens (Table 1).

Constructed wetlands face a number of problems such as uneven distribution of the wastewater over the bed surface, and inappropriate selection of bed media grain size (Dallas et al., 2005; Shrestha et al., 2001a, 2001b). Local conditions must be considered in the design, such as temperature, rainfall, and wastewater composition (Dallas et al., 2005; Fittschen and Niem-czynowicz, 1997; Shrestha et al., 2001a, 2001b). Consequently, Shrestha et al. (2001a, 2001b) concluded that development of appropriate design guidelines for constructed wetlands is imperative.

Pretreatment of grey water in settling tanks for constructed wetlands has been tested (Fittschen and Niemczynowicz, 1997; Li et al., 2003; Shrestha et al., 2001a, 2001b). Shrestha et al. (2001a, 2001b) noted that the irregular removal of sludge from the settling tank causes failure of constructed wetland systems. However, Dallas et al. (2005) did not report this problem. Posttreating CW effluent in a sand filter enhances the quality (Table 3) in terms of N, P, and pathogens (Fittschen and Niemczynowicz, 1997). CW effluent treated by photo-oxidation using TiO₂ and UV shows improved quality in terms of TC and EC (Table 3) and complies easily with European

	BOD	COD	SS	Turbidity	ZĮ	Π	TC CET1/100	Surface	Voluma	Hydraulic Tood m ³	тан			
Treatments		${ m mg~L^{-1}}$		NTU	${ m mg}~{ m L}^{-1}$		mL	cap ⁻¹	m ³	days ⁻¹	days ⁻¹	Chemical Energy	Cost	References
IVSF							Soil filt	ers	1.4		38-75			Nolde and
GW-Source	Grey water	without kitch	nen waste	ewater										Dott, 1992
SSrF	C2 Two types (of the filt	of media wer ters were line	re separat ed with tv	tely tested: 20 vo lyres of pla	mm crushed stic sheets. 7	I rock with The dimen	1 porosity 40% sions of the filt	and 100–15 ers' bed are	0 mm PE1 : 1.5 m loi	7 plastic dr 1g, 0.25 m	inking w wide, an	ater bottles porosity id 0.2 m depth. Also	94%; the bottom SSF of both media	Dallas et al., 2005
GW-Source	Monteverde	teu tururer tu hInstitute's gr	rev water.	aleu as leeu D	כח מוזה הזמווו	ca with c	orv-marinuma-loo						Operation and	
Influent	216 ± 55	Dry	8.5 E7 ±							Ś			maintenance	
Effluents		season	5./E/ª										generally low	
SSrF (PET)	16 ± 4					1.	$1E6 \pm 2.0E6^{a}$		0.075		5.6			
SSrF (Rock)	9.0 ± 1					5	$9 E5 \pm 6.9E5^{a}$		0.075		4.6			
Influent	155 ± 14	Dry season				ς.	$8E6 \pm 1.0E6^{a}$			10				
Effluents		•												
SSrF (PET)	18 ± 2					1.	$1E6 \pm 2.3E6^{a}$		0.075		3:3			
SSrF (Rock)	19 ± 4					1.	$3E5 \pm 2.9E5^a$		0.075		2.7			
Influent	290 ± 36	Wet season				1.	$0E8 \pm 1.0E8^{a}$			Ś				
Effluents											0			
SSrF (PET)	14 ± 5					~i ;	$7E5 \pm 1.7E5^{a}$		0.075		2.9			
SSrF (Rock)	14 ± 11					5	2E4 土 3.3 E4 ^a		0.075		2.9			
Influent Effluents	285 ± 106	Wet season								10				
SSrF (PET)	31 ± 2								0.075		2.1			
SSrF (Rock)	28 ± 0								0.075		1.7			
SSo	Slanted Soil 50 × 17. footprint	l system; soft 5 cm slanted , meaning lin	particle v plastic fo nited land	with 1 cm of K am trays; each 1 use). The var	canuma soil trey has th riation in ten	that comp ree 6 cm r nperature	rises alumina a idges to prever 5–28°C has no	nd hydratec it clogging. influence o	l silica, th 12.5 cm tl n the perf	e setup; th he layer th ormance.	ree stack ickness i	s of 100 × in each tray. (Small	Compact, low cost, can work 3 years with no	Itayama et al., 2006
GW-Source	Bathroom s	inks, baths, a	and show-	ers of a flat fo	r 18 student:	s on the G	randfield Unive	ersity Camp	ns				maintenance	
Influent Effluent	41 ^b	23.3 ^{b,c} 26	<i>6</i> (1.78	0.323			0.1				
EIIIuent	/	0.0	4		2	QC.(0.040							

TABLE 3. Soil Filters and Planted Soil Filters (CWs) Combined with Others Units Treating Grey Water; Influent and Effluent Qualities and Operation

Effluent 47 (6) 3.0 (0.0) 1.8 (0.3) 1.0 (0.06) ^{datys} 0.5 (0.1) $1.3E0$ (1.1E 0) m HESF Planted soil filter Planted soil filter 3.25 Effluent 3.25 Influent $10-40$ Effluent 3.25 3.25 3.25 3.25 Influent $10-40$ 3.25 3.25 3.25 3.25 3.25 3.25 Influent $10-40$ 3.04 3.25 <t< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
HPSF 3.25Influent $10-40$ Effluent $10-40$ Effluent $10-40$ Effluent $10-40$ Effluent $10-40$ tistage 3.25 system 5.6 system 5.6 GW-SourceGrey water of Ecovillage Toarp in SwedenGW-SourceGrey water of Ecovillage Toarp in SwedenThree 165 St $3.45 - 3.3E6^{\circ}$ Influent 165 Sf 18.1 Billuent 165 Sol $3.45 - 3.3E6^{\circ}$ Influent 165 Sol $3.45 - 3.3E6^{\circ}$ Influent 165 Sol $3.46 - 3.46 + 1.4$ Influent 165 Sol $3.46 - 3.3E6^{\circ}$	ling tank, CW, SF, artificial pond 3.25 3.25 3.25 T.9–14.5 T.9–1
$ \begin{array}{c c} \mbox{Influent} & 10-40 \\ \mbox{Effluent} & 10-40 \\ \mbox{HRCW Wul}. Consisting of settling tank, CW, SF, artificial pond \\ \mbox{HscW Wul}. Consisting of settling tank, CW, SF, artificial pond \\ \mbox{tistage} & 5.6 \\ \mbox{system} & 6ev water of Ecovillage Toarp in Sweden \\ \mbox{Three} & 6ev water of Ecovillage Toarp in Sweden \\ \mbox{Three} & 6ev water of Ecovillage Toarp in Sweden \\ \mbox{Three} & 660 \\ \mbox{tistage} & 5.6 \\ \mbox{clamber} & 600 \\ \mbox{min} & 7.4 \\ \mbox{H}. & 1.5 \\ \mbox{tistage} & 5.6 \\ \mbox{tistage} & 600 \\ \mbox{min}^2 \times \\ \mbox{0.6 m} \\ \mbox{0.6 m} & 0.6 \\ \mbox{min} & 5 \\ \mbox{tistage} & 5.6 \\ \mbox{tistage} & 600 \\ \mbox{min}^2 \times \\ \mbox{tistage} & 600 \\ \mbox{min}^2 \times \\ \mbox{tistage} & 5 \\$	ing tank, CW, SF, artificial pond 3.25 Signature, CW, SF, artificial pond $7.9-14.5$ Fittschen and Niem- village Toarp in Sweden 5.6 5.6 1 18.1 3.9 $5.4E5-3.3E6$ $600 \text{ m}^2 \times 14$ 14
Interce istage system 10^{-10} istage system 10^{-10} istage system 5.6 5.6 GW-Source GW-Source GW-SourceGrey water of Ecovillage Toarp in Sweden GW-Source Grey water of Ecovillage Toarp in Sweden 5.6 5.6 GW-Source GW-Source GW-SourceGrey water of Ecovillage Toarp in Sweden 10^{-10} 5.6 5.6 Ince- GHamber STInter 165 361 18.1 3.9 $5.4E5-3.3E6^6$ Influent Influent 165 361 361 18.1 3.9 $5.4E5-3.3E6^6$ Influent Influent 165 361 3.1 7.4 3.9 $5.4E5-3.3E6^6$ Influent Influent 165 $5.46.4$ 1.4 1.4 $1.22-3.3E6^6$	ling tank, CW, SF, artificial pond 7:9–14.5 7:9–14.5 Fittschen and Niem-vilage Toarp in Sweden 5.6 5
$ \begin{array}{c} \mbox{GW-Source} & \mbox{Grey water of Ecovillage Toarp in Sweden} \\ \mbox{Three-} & 5.6 \\ \mbox{chamber} \\ \mbox{chamber} \\ \mbox{ST} \\ \mbox{Influent} & 165 & 361 \\ \mbox{HR-CW} & \mbox{Water flows horizontally, a reed bed planted with Pbragmites communis} \\ \mbox{MIL} & \mbox{MIL} & 3.9 & 5.4E5-3.3E6^{\circ} \\ \mbox{MIL} & \mbox{MIL} $	village Toarp in Sweden 5.6
ST 3.9 $5.4E5-3.3E6^{\circ}$ $600 \text{ m}^2 \times 166^{\circ}$ Influent 165 361 18.1 3.9 $5.4E5-3.3E6^{\circ}$ $600 \text{ m}^2 \times 186^{\circ}$ HR-CW Water flows horizontally, a reed bed planted with <i>Pbragmites communis</i> 0.6 m 0.6 m Influent 165 361 18.1 3.9 $5.4E5-3.3E6^{\circ}$ 0.6 m Effluent < 5 46.4 7.4 1.4 $1.E2-3.3E6^{\circ}$	l 3.9 5.4E5-3.3E6 ^e 600 m ² × 14 contally, a reed bed planted with <i>Pbragmites communis</i> 0.6 m 0.6 m
Influent 165 361 18.1 3.9 $5.4\text{E5}\text{-}3.3\text{E6}^{\text{e}}$ 0.0 m Effluent <5	0.0 m
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VFSF $300 \text{ m}^2 \times 300 \text{ m}^2 \times 0.8 \text{ m}$ Influent <5 46.4 7.4 1.4 $1.\text{E2}-3.3\text{E4}^{\circ}$	$\begin{array}{cccc} 300 \text{ m}^2 \times & 2-4^{\circ} \\ 0.8 \text{ m} & 0.8 \text{ m} \end{array}$
Effluent <4 43.3 1.3 0.79 0–2E1° 130 $n^2 \times$ AP Collected Storm Water 130 $m^2 \times$ 10 m 10	3 1.3 0.79 $0-2E1^{e}$ 130 $m^{2} \times$ 3.4 1.3 0.79 $0-2E1^{e}$ 130 $m^{2} \times$ 10 m 10
Influent <4 43.3 1.3 0.79 Effluent <4 56.3 <0.43 0.23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
gey HR-CW Horizontal Flow Reed Bed (HFRB); water flows continuously to Sand/soil/compost mix media (≤1 mm t	χ teed Bed (HFRB); water flows continuously to Sand/soil/compost mix media (≤ 1 mm diameter), planted with <i>Pbragmites australis</i> Winward

669

Continue (Continue	ed)			OII FIILEIS (ned with Outers		aung G	rey wald	ar; mutu		l Quannes and	Operation
	BOD	COD	SS	Turbidity	TN TP	CFU/100	Surface Areas m ²	Volume	Hydraulic Load m ³	HRT			
Ireatments		${ m mg}~{ m L}^{-1}$		NTU	${ m mg~L^{-1}}$	ImL	cap ⁻¹	m ³	$days^{-1}$	$days^{-1}$	Chemical Energy	Cost	References
Influent	20 (11)	87 (38)	29 (32)	19.6 (14)		$2.51E + 05 \pm 6.31E + 00$		$6 \text{ m}^2 \times 0.7 \text{ m}$	0.48	2.1			
Effluent GW-Source	2 (1) Bathroom	29 (9) sinks, baths	9 (8) and show	16.9 (16) vers of 18-stuc	dent flat on the G	3.981E + 02 Brandfield University	Campus (re:	al) + 10%	(v/v) mixtı	ires of Te	sco Value Shampoo	in tap water	
Influent	(synthe 164 (39)	tic). The rat 495 (192)	io of real: 93 (66)	synthetic is 1. 67.4 602.30	:55.	$2.00E + 07 \pm$		$6 \text{ m}^2 \times$	0.48	2.1			
Effluent	57 (32)	124 (50)	34 (15)	12.3 12.3 (13.4)		2.51E + 0.04		0./ III					
Planted SSrF	The Pante	d SSrF mear	as SSrF-CW	V of both mec	dia were tested fu	urther to be operated	as reed bed	and plant	ed with <i>C</i> c	iix-lacrym	.a-jobi.		Dallas et al., 2005
GW-Source Influent	Montever 216 ± 55	de Institute's Dry seasoi	s grey wate	er.		8.5 E7 ± 5.7E7	e		Ś			Operation and maintenance	
Effluents SSrF-CW	4 ± 4					2.2 E3 ± 2.4E3	e	0.075		8.5		costs are generally low	
SSrF-CW	7 土 4					2.4 E3 ± 4.7 E3	-a	0.075		5.1			
Influent	155 ± 14	Dry seaso	c			$3.8E6 \pm 1.0E6^3$			10				
SSFF-CW	13 ± 2					$2.1E3 \pm 1.7E3^{\circ}$	-	0.075		4.2			
SSrF-CW	18 ± 1					2.6E5 ±5.1E5 ^a		0.075		2.5			
Influent	290 ± 36	Wet seaso	ц			$1.0E8 \pm 1.0E8^{\circ}$	~		\$				
SSFF-CW	10 ± 6					$1.5E3 \pm 1.7E3^{\circ}$		0.075		4.8			
SSrF-CW	18 ± 4							0.075		2.4			
(notent	$\begin{array}{c} 285 \pm \\ 106 \end{array}$	Wet seaso	с						10				
Effluents SSrF-CW	26 ± 6							0.075		2.8			
(FEL) SSrF-CW (Rock)	26 ± 2							0.075		1.7			

grey V-CW Multi- Stage system	- Consists consequently of a feeding tank, two-chambered polyethylene settling tank, V-CW and last 0.5 storage tank	Total cost 63 USD/m ² . Depends also	Shrestha et al., 2001a,
GW-Source Feeding Tank	grey water of 7 person household; grey water is hydro-mechanically flushed 0.2	on available land, negligible operational cost	d1007 .
Two- chamber er	ed 0.5	construction cost possible.	
Juent	$100-400$ $177-687$ 52-188 $0.5-6$ $3.66-25.7^{d}$		
V-CW Fffluent	Intermittent vertical water flow, planted with reed; <i>Phragmites karka</i> , filled with 0.86 coarse sand and grey water is hydromechanically flushed 3 to 4 times per day		
Storage Tan	Jk 0.7		
Effluent	0-12 6.8-72 0.02-1.98 ^d		
V-CW Multi- Stage system	 Consists of consequently of three settling tanks, V-CW, and storage tank, for pathogens removal; TiO₂ + UV radiation were used in lab experiment 		Li et al., 2003
GW-Source Three ST Influent	Grey water of Luebeck settlement in Germany Removes grits, solids and grease		
Effluent	258-354 9.7-16.6 5.2-9.6 7.5E3-2.6E5 ^h 80-94 ^g		
V-CW Influent	Intermittent vertical water flow, filled with gravels are between 4 -8 mm 2 $80-94^8$ $9.7-16.6$ $5.2-9.6$ $7.5E3-2.6E5^{hr}$	(Continued	on next page)

TABLE 3. (Continue	Soil Filte (d)	rs and P	lanted	Soil Filters	(CWs) Co	mbined	with Others	s Units Tre	eating (Brey Wat	ter; Infl	uent and]	Effluent Quali	ties and O	
	BOD	COD	SS	Turbidity	NI	ΤΡ	TC CFII/100	Surface Areas m ²	Volume	Hydraulic Load m ³	HRT				
Treatments		${ m mg}~{ m L}^{-1}$		- NTU	mg L ⁻	-1	mL	cap ⁻¹	m ³	days ⁻¹	days ⁻¹	Chemical	Energy	Cost	References
Effluent Storage Tanl Influent Effluent Disinfection	k The optim	<5–28 ⁸ um TiO ₂ d	osage (ar	nong 1, 3, 5 s	1.18-5 and 10 g L ⁻¹)	5.6–6.8 and UV in	3.3 E2–2.6 E4 ¹ adiation time (т among 1, 2,	3, 4, 5, 6	and 19 hr)) were res	ipectively 5 g	L ⁻¹ and 3		
Influent Effluent grey	hr; the	result repo.	rted in th	us table is for	10 g L ⁻¹ TiC	0 ₂ with 3 hr	UV radiation. 58 ^h 1 ^h								
	BOD	COD	SS	Turbidity	NO3-N	ΛL	ΔL	TC CFU/100	Volume	Hydraulic Load m ³	HRT				
Treatments		${ m mg~L^{-1}}$		NTU		${ m mg~L^{-1}}$		mL	m^3	$days^{-1}$	days ⁻¹	Chemical	Energy	Cost	References
V-CW	Vertical Flo	ow Reed B	ed (VFRI	B); water flow	/s to Sand/so.	d/compost	mix media (≤	1 mm diame	ter); 10 b	atches 2 hi	: HRT	Bas	ed on pilot		Winward
GW-Source Influent	per bate Bathroom 20 (11)	ch, planted sinks, bath 87 (38)	l with <i>Pbi</i> ns and sho 29 (32)	ragmites aust. owers of a fla 19.6 (14)	<i>ralis.</i> It for 18 stude	ents on the	Grandfield Uni	versity Camp 2.51E + 05	ous 6 m ² × 0.7 m	0.48	20 ^f		cale 0.4 cWhm ⁻³ less han ^{GRWRS} , HFRB, MBR and MCR		et al., 2008
Fffluent	101	21 (6)	2 (2)	81(10)				(0.31E + 00) + 00) 5 01E+0							
GW-Source	Bathroom	sinks, bath	z (z) 15 and she Value She	owers of a fla	t for 18 stude water (svnth	ents on the r	Grandfield Uni ratio of real· sv	versity Camp	ous (real)	+ 10% (v)	(A,				
Influent	164 (39)	495 (192)	93 (66)	67.4 (92.3)				2.00E + 07 (3.16E	$6 \text{ m}^2 \times 0.7 \text{ m}$	0.48	20 ^f				
Effluent	5 (6)	31 (30)	10 (6)	2.2 (1.5)				$^{+ 00}$ 1.26E+03							
RVFCW GW-Source	GW flow 1 the low lime stc trickled cycles ii discharg Estimated	co 40 L prin er 500 L re- one pebble, in the low- n the syster ze to 40 L s 450 L days	nary ST, : servoir. C , followec er tank re m is 8–24 secondary - ¹ of sho	and then to the 2W depth 0.5 CW depth 0.5 d by 30 cm ol ecycled contin f hr average r y ST and then wer, laundry	ne root-zone m and 1 m ² f tuff or plasti nually to upp etention time i is used for ii and sink was	of Recyclec perforated . ic media, au per filter. Re per filter. Re rigation. stewaters fin	1 V-CW . Consi, surface areas, t ad the upper la cycling rate 39 21 times the w om a 5-membe	sts of two tai he layers are yer 15 cm pl 0 L hr ⁻¹ ; the ater penetra r household	nks the u 3 in the lanted or average ted he be family.	pper V-CW bottom 5 c 3 soil. The ime the w d. The effl	' and m of ater uent		SU ST	600\$ nvestment cost and 100 abor and maintenance cost.	Gross et al., 2007b

Influent	466 (66) 839 (4	(1) 158 (30)	3 (1.3)	34.3 (2.6)	22.8 (1.8)	5E7(2E7) ^a		¢	-24 ^f	
Effluent	1 (0) 157 (6	52) 3 (1)	8.6 (4.3)	10.8 (3.4)	6.6 (1.1)	2E5)	c I	
						$(1E5)^{a}$				
GRWRS	Green roof wate	er recycling sys	stem (GRWRS): water	flows to continu	iously five row	/s of shallow tro	oughs (depth	h), Optiro	2	Winward
	expanded cla	y media (10 m	un diameter) topped w	vith gravel chipp	ings (20 mm e	diameter), plant	ed with a va	ariety of		et al., 2008
	aquatic plants	s. Baffles and v	weirs create plug flow	and additional a	aeration for 11	nr per days.				
GW-Source	Bathroom sinks,	baths and sho	owers of a flat for 18 st	tudents on the (srandfield Uni	versity Campus				
Influent	20 (11) 87 (3,	8) 29 (32)	19.6(14)			2.51E + 1.2	$m^2 \times 0.$	48	2.1	
						05 ±	0.1 m			
						6.31E				
						00 +				
Effluent	2 (1) 19 (5	3) 3 (3)	0.8(2)			5.01E +				
						03				
GW-Source	Bathroom sinks,	baths and sho	owers of a flat for 18 st	tudents on the (Srandfield Uni	versity Campus	(real)+ 10%	(V/V) 0		
	mixtures of Te	esco Value Sha	ampoo in tap water (s	ynthetic). The ra	ttio of real: syr	nthetic is 1: 55.				
Influent	164 (39) 495 (1)	92) 93 (66)	67.4			2.00E + 1.2	$m^2 \times 0.$	48	2.1	
			(92.3)			07 ±	0.1 m			
						3.16E				
Tfflout	7) UZL (06) VO	00 00 00	0 00			2 16E -				
TIMATIC	W (T (OC) NO	(0) 07 (14)	(10.7)			101.C				
Moto Viahos	in normthered	e are ctandar	d deviations							
INUTE. VALUES	o III parciulese	o alc statical	IN NEVIANOUS.							
^a fecal colifo	rm.									
^b The units c	of the influent a	und effluent a	are $g m^{-2} days^{-1}$.							
°COD basec	l on Mn measu	rement.								
^{days} ammoni;	я.									
^e thermostab	le coliform bac	teria.								
fhours.										
$^{gTOC} = tot;$	il organic carbc	on.								
hr <i>E. coli</i>										

ابنیای پایدار سبز پالایش آب و فاضلاب مدیریت میط زیست

TABLE 4. M	odified Filters: B	iofilters (Combined	d With Ot	ners Units T	reating Grey	Water; Inf	luent ar	nd Effluent	Qualitie	s, and Operat	tion Cc	nditions
	BOD mg L ⁻¹	600	ç	i - -	dL NL	Cinco Cin	-;	-	Hydraulic	Organic Load Kg			
Treatments	BOD _{tot} BOD _{dis}	$mg L^{-1}$	$mg L^{-1}$	Turbidity	${ m mg}~{ m L}^{-1}$		v_{m-3}	hr	Load L m ⁻² hr ⁻¹	BOD m ⁻ days ⁻¹	Chemical Energy	Cost	References
					×	acrobiofilters							
Multistage	Consists consequently c	of settling tan	k, anaerobic 1	filter, bed subn	terged biofilter, se	ttling tank, and disi	nfection. The v	vater level v	vas left			Ц	nura et al., 1995
system	variable to control th	high fluctu	ation in the c	taily inflow.			, <u>(</u>						
GW-Source ST	Japan Single house Coc Senaration bulky solids	oking, bathing and oil	g and washing	g six person sir	gle house		3.67-4.22 0.77-0.83	50-58					
U. Influent ^a	195		123		32.3 3.9		100						
Effluent	40-130		20-136		4-18								
AnBF	Spherical, reticulate, sn.	all mesh flat	plastic filter n	nedia was plac	ed to prevent shor	t circuiting	1.28 - 1.48						
Effluent	1/-/4 4 - 66 7		25-54 		5-11 2-11	-	C7 F 7C F						
3 BF	An 80 Lmin - blower v microorganisms	vas aeraung a	nd mixing (D	iological proce	sses) lite content;	water +	CF.1-F2.1						
Effluent	5-10		3-13		1.3-10 0.9-1.6								
ST							0.37 - 0.46						
Disinfection	solid-chlorine						0.019						
Effluent	5-10		3-13		0.9-1.6								
BAF	Small footprint. diamete 4.75 mm. voidage 50	er 0.165 m, efi %. sunnlied a	fective depth ir 20 L min ⁻	1.64 m (used) ¹ . Back washir	n 2000 article) and ø cvcle: water 3 n	1 1.75 m (used in 2 nin: 20 L min ⁻¹ and	001 article), pla air 15 min 20	stic media s L min ⁻¹ .	ize range 2.36	Q			
GW-Source	Artificial Grey water, m	imicking grey	water discha	urge from multi	story building			2.7-0.46		1.09 ± 0.73		Je	fferson et al.,
Tofficiant	<u>61</u> ± 20		63 ± 65			3EU 3E7							1999 and 2001
Effluent	4 ± 4		5.9-5.5	3.2 ± 8.9		4E0-1E5							4110 TOOT
GW-Source	Artificial grey water; mi	micking grey	water dischau	rge from multi	tory building				400	0.45–7		Je	fferson et al., 2000
Influent Fffluent	9–100 ~32		63 ± 40 7 + 9	5 L-C /		2E2-5E7 1F1_2F5							
GW-Source	Primary sewage + (Arti	ficial Grey wa	tter; mimickir.	ng grey water o	ischarge from mul	tistory building)		2.0-0.4		1.2 ± 1.1		Je	fferson et al.,
Influent Effluent				2.8 ± 3.9		2E2-5E8 1E3 ± 2E5							1007
GW-Source	Primary sewage							2.8 - 0.4		2.45 ± 1.0			
Influent Effluent grey		323 ± 102 52.3 ± 28	148 ± 77 18 ± 20	12.6 ± 27		$\begin{array}{c} 1.0E6\text{-}6E7\\ 1E4 \pm 1E7 \end{array}$							

674

	BOD mg L ⁻	L L	33	- Titler T	TP TP		Tun	Hydraulic Tood T	Organic Load Kg				
Treatments	BOD _{tot} BOI	D _{dis} mg L ⁻¹	¹ mg L ⁻¹	NTU NTU	${ m mg}~{ m L}^{-1}$	100 mL	hr	m ⁻² hr ⁻¹	days ⁻¹	Chemical	Energy	Cost	References
						Microb	iofilters						
submerged MBR	. MIDK Small footprint; surface area (submerged bi 0.24 m ² pore s	ioreactor. Wu size 0.4 <i>u</i> .m	orking volum and sumilied	the 0.035 m^3 (t 1 air are 15 L	used in 2000 min ⁻¹ the it	article) an nmerse de	ed 0.066 m ³ (orth 0.6	used in 200	1 article), 21	membrane pl	ates with	Jefferson et al., 1999–2001
GW-Source	Artificial Grey v	vater; mimickii	ng grey wat	er discharge	from multistc	rry building		31.5-3.4		0.14 ± 0.07		Substantial canital cost	1///
Influent	41 ± 30	120 ± 74	4.7			2E0 土 2E7				000			
Effluent	1 ± 2	9.6 ± 7.	4	0.32 ± 0.28		2E0-2E1							
GW-Source Influent	Artificial Grey v 9–100	vater; mimickii	ng grey wat	er discharge	from multisto	ary building 2E2-5E7				acid 4	4.0E3 kWh kg	sub critical flux lowers	Jefferson et al., 2000
Effluent	<10			<2		$\leq 1E1$)	product ⁻¹	membrane	
GW-Source	Primary sewage building)	e + (Artificial C	Grey water 1	mimics grey v	water of mult	istory	29.2–5.5	-	0.16 ± 0.08			replacement cost, but	Jefferson et al., 2001
Influent	1	144 ± 85	5.7 62.6 ± 40			2E2 土 5E8						significantly increases	
Effluent		10.6 ± 5	$5.5 3.6 \pm 3.7$	0.4 ± 0.28		1E0-1E3						investment cost	
GW-Source	Primary sewage	1)										compares with BAF	Jefferson et al., 2001
Influent		323 (10)	2) 148 \pm 77			$1.0E6 \pm 0.000$	34.2–3.1	-	0.18 ± 0.11				
Effluent		15.5 (7.5	5) 18 ± 20.2	13 ± 27		1E0 -<2E2							
M(F)BR	Type-Submerge are 0.00973 I	ed; working vo	olume 0.007;	3 m ³ , membra	ane surface a	rea 0.04 m ² n	1 ⁻³ , fiber v	'oidage mem	brane 0.04 µ	um, voidage	97% and suf	oplied oxygen	Jefferson et al., 2000
GW-Source Influent	Artificial Grey v 9–100	vater; mimickii	ng grey wat 52 + 58	er discharge	from multistc	2F2-5F7		1220	0.22 -1.5				
Effluent	<18		< ł	<2-15		1E1-2E4							
M(F)BR	A small footprin trans-membr: Organic load then by 1 ×	at submerged 1 ane pressure (ling rate 0.16 ((1 mm screen. 4	MBR, 3 Litre 73–402) ave 0.09–0.21) F Air supply C	e lab-scale, h¢ erage 249 mb; Kg COD m ⁻³).32 m ³ hr ⁻¹ .	ollow UF fibe ar, average 1. days ⁻¹ . F/M : Operational _I	rt membrane, 3 (0.42–1.85) 256 (118–390 phase 45 min	, membran) mg MLSS)) mg COE 1 with perr	te area 400 c and 0.94 (0.) ⁻¹ g vss ⁻¹ . G neate and 15	m ² , pore siz .26–1.32) mg irey water fi imin relaxat	e 0.1 μ m, g MLVSS mg ltered throug tion phase. ¹	L ⁻¹ . gh 1 × 1cm Temperature	Investment and operational cost high,	Merz et al., 2007
GW-source Influent	Increased frc Shower wastew 59 (13)	ater from spor	rts and leisu	rre club in Ra 29 (11) 1	bat-Morocco. 15.2 1.6	1	3 (9–18)	7–11 (8)				expensive for developing	
Effluent	4 (1)			0.5 (0.3)	$\begin{array}{c} (4.5) \\ 5.7 \\ 1.9) \\ (0.5) \\ (0.5) \end{array}$							countries	
				•								(Contin	ned on next page)

675

^creported as BOD; ND = not detectable.

(Continued	0													
	BOD mg L ⁻¹	COD mg L ⁻¹	S	Turbidity	dT NT	TC CH1/	Volume	HXT LO	raulic Lo	brganic oad Kg DD m ⁻³				
Treatments	BOD _{tot} BOD _{dis}	COD _{tot} COD _{dis}	mg L ⁻¹	NTU	mg L ⁻¹	- 100 mL	m ³	hr m ⁻²	hr ⁻¹	lays ⁻¹	Chemical	Energy C	ost R	teferences
MBR	Two joint 34 L red with activated : L davs ⁻¹ and se	actors, each fitted sludge biomass, th olids retention tim	with two su te aeration: ' e 68 davs	bmerged A ² 5 L min ⁻¹ , a	f flat sheet Kub lso 10 L min ⁻¹	oota membran air lift for ge	tes, $0.4 \ \mu m$ nerating rec	nominal por circulation lo	re size, se op, the H	eded LR 168			Wi	nward et al., 2008
GW-Source Influent	Bathroom sinks, 1 20 (11)	baths and shower: 87(38)	s of a flat for 29 (32)	: 18 student 19.6 (14)	s on the Grand	field Universi 2.5E5 ±	ty Campus 2 ×	9.7	15					
Effluent	1 (1)	47(13)	(UN) UN	0.2~(0.1)		6.3E0 ≤ 4 0F±01	0.034							
GW-Source	Bathroom sinks, l mixtures of Tee	baths and shower: sco Value Shampo	s of a flat for tap wat	- 18 student: er (svntheti	s flat on the Gr	andfield Univ f real- synthet	ersity Camp	ous (real)+ 1	(0% (v/v)					
Influent	164 (39)	495 (192)	93 (66)	67.4 (92.3)		2.0E7 ±	2 × 0.034	9.7	15					
Effluent	1 (2)	53 (24)	1 (2)	0.2 (0.1)		4.4 ±								
					Side-	stream MBR								
U(T)BR	Side-stream MBł membrane, 7 in cross-flow velo	R consisted of 0.7 n one module, 0.5 of two states of the second st	m ³ biologics 5 m ² the tot: ys HRT is en	al reactor ar al membran tough when	id UF membrar e surface area, sludge concer	ne unit; the m MWCO 500 1 ntration is 10	embrane is kDa. Trans- g MLSS L ⁻¹	polyacrylon membrane p	itrile tubu oressure 2	ılar bar,			An	derson et al., 2002
GW-source Influent	Laundry wastewa 610–680	ter resulted of wa 1700	shing garme	nts coming	from hotels an 5.3–12 20–48	d restaurants 3	0.7	24						
Etfluent	<2	50 								;			1	:
EB+ M(F)BR GW-Source	1 mm fine screen Bath, shower and students	followed by an e I washbasin strean	qualization l 1s discharge	asin follow from seven	ed by MF. student apartr	nents at Tech	nion campu	is; accommo	date marı	ied H	ypochlorite solution to treat the		Frie	edler et al. 2006a
Equalization basin	Preceding (Equali residence time	ization Basin) ther is < 1 to maximu	e was 1mm m 10 hr	square shaf	ed screen to r	emove gross :	solids. EB v	olume 330 L	maximu	ц	mem- branes			
Effluent	69 (33) 36(20)	211 108 (47 (141)) 92 (115)	65 (68)		3.4E5 (1 8F5) ^b								
M(T)BR	Aeration basin; w membrane unii area 0.34 m ² , p	ith 0.2 m ³ and HR t compromises of bermeate flux varie	T 5–8 hr, tol 4 parallel tul s from 0.058	tal head of bular polyet $38 \text{ m}^3 \text{ m}^{-2} \text{ h}$	3 atm creates c hylene; MWCC n ⁻¹ to 0.0382 e	ross flow velc D 1000,000 Da equivalent to	ocity 4.0 m a dton, diame 20 L hr ⁻¹ . F	s ⁻¹ , an the (eter 0.0155 n Hypochlorite	side-strea a total sur is used to	m) face 2 wash				
Influent	the membrane 69 (33) 36 (20)	211 108 (47 108 (47 108 (47	by tap wate) 92 (115)	er several tu 65 (68)	ne; sludge age	days (15–20) 3.4E5 ما متحاله								
Effluent	1 (2) 0.5 (0)	(141) 40 (16) 37 (14)) 12 (8)	0.2 (0.1)		(1.8E) ² 27 (56) ^b								
<i>Note.</i> Values ^a standards va ^b fecal colifori	in parentheses a ilues, reported b m.	re standard dev y The Institute (iations. of Public H	ealth, Min	istry of Healt	h and Welfa	ure (1999).							

676

TABLE 4. Modified Filters: Biofilters Combined With Others Units Treating Grey Water; Influent and Effluent Qualities, and Operation Conditions

TABLE 5. 1	Modified F	filters: Cl	nemfilters	: Combine	ed with Othe	ers Units Trea	ating Grey Wat	ter; Influe:	nt and	Effluent Qu	alities, and Operatic	n Conditions
	BOD n	ng L ⁻¹	0		-	TN TP				Hydraulic		
Treatments	BODtot	BOD _{dis}	COD mg L ⁻¹	SS mg L ⁻¹	Turbidity NTU	mg L ⁻¹	1C CFU/ 100 mL	Volume m ³	hr 'r	Load L m ⁻² hr ⁻¹	Chemical Energy Cost	References
M(T)CR	Two units	: Photo-cat	alytic Oxida	ution Reactor	r (PCOR) follow	ved by M(T)F ui	nit					Rivero et al.,
GW-Source	Shower w	astewater										2006
PCOR	8L stainlee 0.5–1.2 maxim	ss steel tan 5 m s ⁻¹ to	k reactor wi keep the sh	th 25-W UV(arry in suspe	C lamps (Philip 2nsion, TiO ₂ UN ents	s), Hombikat U 7-100 tested dos	V-100 TiO ₂ used a ages 5 and 10 mg	ınd air souro L ⁻¹ . The acl	e with a hieved m	velocity inimum and		
Influent	114 - 135		252-324		15.6–18.7							
M(T)F	Membran cross-se	e characteri ection area	stics; $1 \text{ m le} 200\text{-mm}^2$, a	ength, 10 Lur nd the tested	men the interna d flux 15 and 5	al diameter 5-mi 5 L m ² hr ⁻¹ .	n, pore size 0.05 μ	um, total are	a 0.157 1	n ² , and		
Effluent	2 - 17		56-72		0.35-3.57		Meets WHO					
							standards					
M(T)CR	9 L PCOR	with four :	submerged .	25 W, UV-C	lamps and side	e stream air-lift l	A(T)F				TiO ₂	Winward
GW-Source PCOR	Bathroom	sinks, batł	is and show	/ers of a flat	for 18 students	on the Grandfi	eld University Can	sndu				et al., 2008
Influent M(T)F	20 (11) 0.05 μm r	tominal po	87 (38) re size, 5 g	29 (32) L ⁻¹ titanium	19.6 (14) dioxide, Aerati	ion: 5 L min ⁻¹ a	2.5E5±6.3E0 nd air left generat	0.009 es recirculati	3.8 on loop	15 10 L min ⁻¹ ,		
	HLR 57	L days ⁻¹ .										
Effluent GW-Source	3 (2) Bathroom	sinks. batt	43 (14) is and show	ND (ND) rers of a flat	0.1 (0.0) for 18 students	on the Grandfi	ND eld Universitv Can	nous (real)+	10% (v/	v) mixtures of		
augu	Tesco V	Value Sham	poo in tap	water (synth	tetic). The ratio	of real: synthet	ic is 1: 55.	-	,			
Influent	164 (39)		495 (192)	93 (66)	67.4 (92.3)		$2.0E7 \pm 3.2E0$	0.009	3.8	15		
Effluent	10 (8)		78 (18)	2 (1)	0.72 (1.1)		ND				(Continu	ed on next page)

	COD mg L ⁻¹	TN NH4-N NO3-N) T	FC	Hydra	ulic …3			
Treatments	mg L ⁻¹ COD _{tot} COD _{dis} NTU mgL	-1 mg L ⁻¹	- 11 mg L ⁻¹	CFU/100 mL	hr days	-1 Chemical	Energy	cost	References
Multistage	Consists of consequently of Settling tank,	Attached ollowed RBC then secondar	biological treat v settling tank a	tment system nd UV disinfection	2.1-2.4	6		RBC low energy	Nolde, 1999
System GW-Source	Multistory Building; Showers, bath and h	nd-washing basin.						and maintenance	
Effluent	50-125 100-430	5-10	0.2-0.6 1E2-3	1E6 1E1-1E6				costs are a challenge	
kBCS Effluent Disinfection	<5 Tiltra Violet							especially for small grey	
Effluent			2E-2-	2E0 2E-2-1E-1				w arei piailis	
Multistage Svetem	Consists of equalization tank, RBC, sedim filtration (SF) and disinfection	entation basin (SB), pre-filtra	ttion storage tanl	κ (PFST), sand	17.5		BC con-		Friedler et al., 2005 and
GW-Source	Bath, shower and washbasin streams disc	narge from seven student ap	artments at Tech	mion campus;			little		2006a ^a
Equalization Basin	1 mm square shaped screen removes gro HRT and 10 hr the maximum	s solids followed by (EB); E	B volume 330 L	< 1 hr minimum	10		uru 5)		
Effluent	59 (30) 158 (60) 110(54) 33 43 (23 3) (25			5.6E5 (6.5E5)					
RBCs+SB	RBC: Two basins each volume 15 L, the s perpendicular to the flow rotates in a 1	naft carries the discs, total su -1.5 rpm, means residence t	irface areas is 1 i ime (MRT) is 2 h	m ² , and is nr per basin. SB:	4+1				
Effluent	Volume is 7.5-L, MRT 1-hr, sludge is re 7 (10) 46 47 (27) 1.9 (2.3) 16	noved manually, 40% of the	: disc surface are	as is submersed 9.7E3 (3.0E3)					
	(19.4) (14.	0							
PFST SF	To regulates between SB (continues flow) Gravity filter, diameter 10 cm and 70 cm 36%, and supported by 5 cm gravel, th	and SF (batch flow), MRT 2 nedia depth; the medium cc e filter operated intermittent	2 nsists of quartz ; y 11time a days,	and sand, porosity 15 minutes each	2.2 0.25				
Influent	time, the fultration velocity is 6.35 m for $7 (10) 46 (19) 47(27) 1.9 (2.3) 16$, back washed weekly arte	t nutation 1.20 f	$9.7E3 \pm 2.02\%$					
Effluent	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5.1E4 土 2.1E4 土					
Disinfection	(0.38) (4.8) By Chlorination, hypochlorite is 0.2–0.25% residual after 0-min), carried out in a batch moc	le and calculated	0.0E2 l for 1mg L ⁻¹					
Influent				$5.1E4 \pm$					
501				6.6E2					
Ettluent				$1B-1 \pm 5.2B1$					

Note. Values in parentheses represent standard deviations. ND = not detectable.

and Operat	ion Conditions														
	COD mg L ⁻¹	S S m	E s	NH NH	l₄-N NC	03-N	L dIL	2	ç	Tarr	Hydraulic Load m3				
Treatments	mg L ⁻¹ COD _{tot} COD _{dis}	NTU L	20	mg	L^{-1}		L ⁻¹ C	FU/1001	ur	hr	days ⁻¹	Chemical	Energy	Cost	References
FBR + disinfection	FBR followed by disinfection			W	tached b	iologica	l treatmer	nt syster	e	0	0.03-0.04			Total costs dependent on site	Nolde, 1999
GW-Source	Bath and shower of two perse	ns single hou	Ise											conditions	
FBK Influent Effluent	70-300 113-633 <5						1E4 2E-22	-1E6 1E4	-1E3 2-						
disinfection Effluent	Ultra Violet the optimum UV (lose 150 and	$400 \text{ J} \text{ m}^{-2}$				2E-22	2E-	01 ²						
BAF GW-Source Influent	Two-stage down flow fluidize pulverized fuel ash media v Artificial Grey water; mimickir	d bed, diamet vas used in b ıg grey water	ter 0.15 m. oth colum discharge	, workin ns. from ha	g volume nd basins	0.036 m	⁴ , and the	height 2	њ, Bed	media; I	ytag				Hills et al., 2001
Effluent MultiStage Svstem	20–25° 6–10° Consists of consequently of E¢	qualization tar	ık, SBR fo	llowed l	y MF										Shin et al., 1998
GW-Source Equalization	Japanese Office building: Coo volume 2.5 m ³	king, bathing,	, washing												
Basin SBR Cyclic Aeration	SBR volume 1.0 m ³ , liquid vol operational modes, cyclic a settled in 1 hr, decant in 0.: Aeration phase 4 hr then anox	ume 0.6 m ³ a eration, conv 5 hr and idle J ic phase 5 hr	nd settled entional ai phase was (DO 2.2-	sludge nd step- 0.5 hr. 5.8 mg I	/olume 0. eeding. S MLSS 357 ^{_1})	4 m³ op BR feed 9 mg L ⁻¹	erated in the with mixin and SVI is	uree 13 in 1 hı s 160 ml	8-1 9 1	01					
mode Influent Effluent Conventional	30–194 20 Anoxic, Aerobic and post Anc	185 20 xic	29 土	11 6-2 < 1	5 -+	0.2	H-0.7								
Mode Influent Effluent	30-130 20	185 20	29 土	11 6–1 < 1	2 12 -	-14 0.2	-0.7		6					(Continued or	n next page)

TABLE 6.	Aerobic Biolo	gical Proce	sses: Sus	pended	and Att	ached Co	mbined v	with Oth	iers Units	s Treatir	ng Grey W	ater; Influ	ent and F	Effluent	Qualities,
and Oper	ation Condition	ns (Continu	(pən	I											
	COL) mg L ⁻¹	-	SS	N	NH4-N	NO3-N	ſ	FC	1941	Organic Load				
Treatments	mg L ⁻¹ COD _{tot}	COD _{dis}	Iurbidity	ng L ⁻¹		${ m mg~L^{-1}}$		$^{\rm F}_{\rm L^{-1}}$	CFU/ 100 mL	hr	kg COD m ² days ⁻¹	Chemical	Energy	Cost	References
Step-feeding Mode	3 The inflow divide	ed into two pa	rts: one is u	sed for CC	DD remova	ıl and nitrifi	cation, the c	other used	for supplen	nentary ca	rbon source	or denitrifica	tion		Shin et al., 1998
Influent Effluent		26–194 20		185 20	29 ±11	6–12 1	1	0.4-0.7		6					
SBR	SBR volume 3.6 I COD and shide	L, sludge inoct oe satiability v	ilums was a vas measure	ctivated sl d in terms	udge from of SVI an	wastewater d it was 51	treatment p	olant in Lee	euwarden. 1	The yield	for the three	experiments '	vere 0.05 g	VSS g ⁻¹	Hernandez et al 2007
GW-Source Influent	Eco-village in Gr 425 (oningen, and 1 107)-1583 (382)	DESAR proje	ect Sneek			0			24	0.15-8.0				
% removal SBR	90 SBR volume 3.6 I	, sludge inocu	ılums was a	ctivated sl	udge from	wastewater	treatment p	olant in Lee	euwarden.]	The yield	for the three	experiments ().08 g VSS g	g ⁻¹ COD	Hernandez et al 2008
Influent	830 (211)				53.6 (50.7)	1.2 (1.3)		7.7 (5.6)		12					CL 41., 2000
% removal	88 (8)				24 (61)	24 (174)		8 (99)							
<i>Note</i> . Value ^a similar to	es in parentheses data of Friedler e	s are standar et al. (2005,	d deviatio 2006); dat	ns- a adapte	d from F	riedler et ;	ul. (2005).								
^b BOD (tot:	al).														
BOD (dise	solved).														

Operatio	n Condit	tions			5						0	`	,			,	
		COD II	lg L ⁻¹			N mg L ⁻¹	_		$P \text{ mg } L^{-1}$								
freatments	COD _{tot}	CODss	COD _{col}	COD _{dis}	ΠN	NH4-N	Particulate- N	Total	Ortho _F	T Tarticulate	emperature °C	SRT days	HRT hr	Chemical	Energy	Cost	References
JASB																ц	Ilmitwalli and Ot- terpohl, 2007
3W-Source nfluent	r,									5	~		12				
° removal affluent 6 removal	41 31									18	~		20				
JASB	Storage tai	nk (with 1	nixing) fo	ilowed by	7 L UASB	reactor; di	ameter 7 cm, 1	reight 200	cm. up fl	low velocity	0.33 m hr ⁻¹					ц	Ilmitwalli and Ot- terpohl, 2007
3W-Source	Grey wate	r was coli	lected froi	m Flintenb.	reite settle:	ment in Lu	ebeck, Germa	ny									
nfluent ^a	618	308	177	133	27.1	5.5	21.6	9.6	6.6	3.3	30	93-481	16				
6 removal	(130) 64	(162) 84	(114) 52	(36) 51	(3.5) 30	(0.8) -70	(3.3) 53	(0.3) 15	(1.0) 6	(0.7) 53							
	(2)	(2)	(19)	6	(2)	(44)	(11)	(4)	(11)	(11)							
nfluent	647 (137)	353	177	117	27	3.9 0.00	23 (4)	9.7	8.7	1.0	30	64-377	10				
6 removal	25 25	(101) 79 (8)	29 29 (20)	30 (H)	6 ₅ 8	15 15 (36)	31 (13)	17	15 19	() 43 (33)							
nfluent ^a	682	310	236	136	6	3.5		9.6	8.4	1.5	30	27–338	9				
- ramon	(106)	(86) 68	() (00) 22	(33) 35		(1.6) (1.7)		(0.8) 21	(0.1) 10	(0.3) 30							
0.10110741	(12)	(12) 9	(18)	(21)		53.6)		6	98	(4.0)							
JASB	3.6 and 5.0 L																Hernandez et al.,
3W-Source	Eco-village	e in Gron	ingen, anc	d DESAR p	roject Snee	ak											2007
				1											(Contin	ned on	next page)

Oberand		n) erron	OTHTT	(ma												
		COD m _i	${ m g~L^{-1}}$			N mg L ⁻¹	_		$P mg L^{-1}$							
Treatments	COD _{tot}	COD _{ss}	COD _{col}	COD _{dis}	ΠN	NH4-N	Particulate- N	Total	Ortho particulate	Temperature °C	SRT days	HRT hr	Chemical	Energy	Cost 1	leferences
Influent % removal	200–2700 40 (40)	50–2100 56	135–402 33	135–722 25						20–30		12-24				
UASB	3.6 L														_	Hernandez et al., 2008
Influent	827 COAD	385 (167)	246 (92)	196	29.9 (11 0) ^a	0.8 00 60		8.5 (0.2)		35	393	12				0007
% removal	(2) (2)	(/01)	(74)		3 (57)	-616 (642)		8 30 30 8								
grey TTACD I CDD		o vel berne	aa		5	Ì)							-	Tamandar
NGC+GCVD		owed by a	NGC												-	et al., 2008
UASB	5.0 L															
Influent	830 (211)	427 (181)	212 (81)	234 (70)	53.6 (50.7) ^a	1.2 (1.3)		7.7 (5.6)		35	76	~				
% removal	39	Ì			8-	-856		5								
SBR	SBR volun	ne 3.6 L, si	ludge inc	culums wa	as activated	l sludge fro	om wastewate	r treatmen	nt plant in Leeuward	den. The yield fo	or the three					
5	experin	nents 0.19	g VSS g ⁻	-1 COD ret	noved.	Ņ	l									
Influent	(190)				$52 (14)^a$	ر (4)	5.7 (2.2)				3/8	0				
% removal	80				26	91	11									
	(6)				(/7)	(0)	(31)									
<i>Note</i> . Valı ^a Total Kje	ıes in par İdahl. nitr	entheses ogen (Tl	i are stai Kj).	ndard de	viations.											

bathing water standards (Table 1; Li et al., 2003). The effluent treated with TiO_2 needs further treatment to remove the TiO_2 , which takes a relatively long time to settle. Therefore, centrifugal separation may be needed, and this makes the disinfection process expensive (Li et al., 2003). Applications of photo-oxidation followed by separation of TiO_2 by MF are reported in the Chemfilters section.

3.2.2 BIOFILTERS

The tested biofilters can be classified as macro- and membrane biofilters. Macrobiofilters can be further classified into two subcategories: attached and suspended. Membrane subcategories are submerged and side-stream. Attached macrobiofilters have been tested, namely Biological Aerated Filters (BAF), which combine depth filtration through a porous media bed with a fixed film biological reactor (Jefferson et al., 1999, 2000, 2001). Anaerobic Biofilters (AnBF) and Bed-Submerged Biofilters (BSB) combine macrofiltration with an activated sludge system (Imura et al., 1995). Submerged or side-stream Membrane Biological Reactors (MBR) combine membrane filtration with an activated sludge system. Jefferson et al. (1999, 2000, 2001) and Winward et al. (2008) tested a submerged MBR. A submerged Fibrous M(F)BR was tested by Jefferson et al. (2000) and Merz et al. (2007). A side-stream tubular U(T)BR was tested by Andersen et al. (2002) and an M(T)BR was tested by Friedler et al. (2006). All filters, except the anaerobic filter, are supplied with an external oxygen source.

The performance differences of micro- and macromembrane biofilters are presented in Table 4. The microsystems produce better effluent qualities than a macro biofilter with an internal media structure of 2.36-4.75 mm and a 50% voidage (Jefferson et al., 2000, 2001). The performance tests of the biological filters show that the effluent qualities of biological filters are dependent on the porosity of the filtration media and the HRT (Table 4). which is similar to the conclusion for the physical filters and CW. Biofilters' nitrogen and phosphorous removal performance were not tested, except by Merz et al. (2007), who reported 63% and 19% removal, respectively (Table 4). Jefferson et al. (1999, 2000) proved that the removal performance of MBR, M(F)BR, and BAF are dependent on the internal system structure and not on the organic load. The MBR performance is not affected significantly by increasing the temperature and biomass concentration (i.e., 11°C and 0.4 g VSS L⁻¹ compared with 20°C and 1.4 g-VSS L⁻¹; Merz et al., 2007). Furthermore, the performance is not affected by the sludge age in the range of 4-20 days (Lesjean and Gnirss, 2006). Imura et al. (1995) changed the volumes of the AnBF and BSB and other units in the system, consequently changing the HRT, which improved the performance of the total system. A disinfection stage is inevitable for BAF and MBR to guarantee risk free effluents (Friedler et al., 2006; Jefferson et al., 1999; 2000; Merz et al., 2007).

Biofilters show problems with cleaning, membrane fouling, and operational cost. Table 4 shows the operational conditions of a BAF operated by Jefferson et al. (2000), who reported that back washing to eliminate contamination accounted for over 20% of the total flow. This persistent contamination results from surface binding by macrosolids such as hair and precipitated soaps. Jefferson et al. (2000, 2001) showed that submerged MBR pilot plants treating artificial, low suspended solids and grey water suffer from fouling and need frequent cleaning. In contrast, the side-stream MBR pilot plants tested by Andersen et al. (2002) for treatment of laundry wastewater had limited fouling problems. Furthermore, Melin et al. (2006) reported for submerged MBRs, treating municipal wastewater at full scale, little fouling problems compared with a pilot plant. Applying subcritical flux conditions allows a stable flux that reduces the typical operational and maintenance cost (Jefferson et al., 2000). Merz et al. (2007) reported that the MBR investment and operational costs are high and thus less affordable for developing countries. Fletcher and Judd (2007) compared the costs of MBRs with SAF, RBCs, SBR, TF, and BAF systems. The capital costs, as well as the desludging and maintenance costs, are considered similar for the different systems. But the MBRs require 4 times the energy of the conventional systems. Fletcher and Judd (2007) justified their conclusions on a study of prefabricated units installed on site, treating medium-strength municipal wastewaters of 6-20 persons.

Pretreatment of biofilter's influent is advisable for MBR (Melin et al., 2006) and optional for other filters. Influent pretreatment reduces blockage, fouling problems, and cleaning frequency. It also produces better effluent qualities in some cases (i.e., BAF). Applied pretreatment techniques are a primary settling tank prior to biofilter (Imura et al., 1995), and screens (1×1 cm followed by 1×1 mm) prior to an MBR (Merz et al., 2007). Posttreatment of anaerobic filter effluent improves its qualities (Table 4), in terms of BOD, TN, TP, SS and pathogens (Imura et al., 1995).

3.2.3 CHEMFILTERS

A Membrane Tubular Chemical Reactor (M[T]CR) combines a Photocatalytic Oxidation Reactor (PCOR) and a side-stream Membrane Tubular Filtration (M[T]F) unit. The PCOR oxidizes organic matter by means of TiO₂ in the presence of ultraviolet light and oxygen (Rivero et al., 2006; Winward et al., 2008); the TiO₂ is separated from the liquid phase in the subsequent M(T)F unit. The M(T)CR's performance depends on the membrane pore size, in addition to permeate flux, TiO₂ dose and mixing (Rivero et al., 2006). With proper optimization of the latter factors, an M(T)CR produces stable sludge and a stable effluent quality in terms of turbidity, BOD, and TC, which can comply with the most conservative standards (Table 5). However, Winward et al. (2008) reported a high fluctuation of effluents' COD. Rivero et al. (2006) stated that a full recovery of the TiO₂ could be achieved and the

process could run continuously. However, they noted that further studies are required to determine the efficiency under critical flux conditions.

Although an MCR overcomes the MF primary sludge production, the issues of concerns are high operational cost, membrane fouling, recovery of TiO₂ (Li et al., 2003), and high effluents' COD fluctuation (Winward et al., 2008). Pretreatment of grey water with high SS is required before feeding the MCR. Influent pretreatment reduces the blockage, the fouling problems, and the cleaning frequency. Posttreatment of M(T)CR's effluent (i.e., recovery of the catalysts and reduction of the turbidity) is optional and depends on the PCOR treatment efficiency and the M(T)F porosity.

3.3 Biological Treatment

Biological treatment of grey water followed by disinfection to guarantee riskfree effluent is recommended (Nolde, 1999). Such a system can be optimized for a minimal energy and maintenance (Nolde, 1999). Otterpohl et al. (1999) recommended application of attached biomass and avoiding activated sludge systems. Both systems have been examined: Nolde (1999) and Friedler et al. (2006) examined attached systems, and Shin et al. (1998), Hills et al. (2001), and Hernandez et al. (2007) tested activated sludge systems. Elmitwalli and Otterpohl (2007) and Hernandez et al. (2007, 2008) showed the potential of UASB-systems for anaerobic pretreatment of grey waters.

3.3.1 Aerobic Attached-Growth Processes

Aerobic attached-growth processes such as the Fluidized Bed Reactor (FBR) was examined by Nolde (1999) and the Rotating Biological Contactors (RBCs) were examined by Nolde (1999) and Friedler (Friedler et al., 2005; Friedler et al., 2006). Table 6 shows a two-stage aerobic FBR and multistage RBCs produce effluent qualities in terms of BOD similar to the MBR effluent quality. An RBC energy consumption and maintenance costs are less than that of an MBR (Friedler and Hadari, 2006). However, both an FBR and an RBC are not successful in pathogen removal. Friedler (Friedler et al., 2005; Friedler et al., 2006) reported that an RBC removes BOD more efficiently than COD, which is attributed to the presence of nonbiodegradable or slowly biodegradable organic matter in the grey water.

Nolde (1999) and Friedler (Friedler et al., 2005; Friedler et al., 2006) did not encounter any problems while treating grey water in an FBR and an RBC, except for the low removal of COD reported by Friedler (Friedler et al., 2005; Friedler et al., 2006). However, it can be expected that if a clarifying tank is not used, the SS in the RBC effluent may cause a failure in the disinfection process. Combining an RBC with primary and secondary sedimentation tanks (Table 6) leads to a reduction in the weekly maintenance time to 0.2 hr and an energy requirement for treatment, disinfection, and service water of less

than 1.5 KWh m⁻³ (Nolde, 1999). Costs for the treatment of produced primary sludge are, however, not taken into consideration.

3.3.2 Aerobic Suspended-Growth Processes

A Sequencing Batch Reactor (SBR) operated by Shine et al. (1998) produced an unstable effluent quality in terms of SS, but was stable regarding BOD. The BOD values were close to the effluent BOD of FBR, RBCs, and MBR (Table 6). In agreement Akunna and Shepherd (2001) reported RBCs and SBR treating small communities domestic wastewater, produced almost the same effluent quality in terms of BOD (i.e., 1–15 and 2–22 mg L^{-1} , respectively). Furthermore, RBCs and SBR have the same capital and running cost in terms of energy consumption. Shin et al. (1998) optimized SBR operational modes to achieve the highest nitrogen removal through testing step-feeding, cyclic aeration, and conventional modes. The results (Table 6) illustrate that an SBR operated at an HRT of 12 hr produces an effluent in terms of nitrogen comparable to that of CW operated at an HRT of 14 days (Table 3). An SBR treating a mixture of black and grey water reduces the nitrogen content from 20-59 mg NH₃-N L⁻¹ to 5-25 mg NH₃-N L⁻¹ (Akunna and Shepherd, 2001). However, an RBC produces a better effluent quality, 0-5 mg NH₃-N L⁻¹ (Akunna and Shepherd, 2001). Hernandez et al. (2007, 2008) reported production of a low amount of sludge with good sedimentation characteristics when operating an SBR for the treatment of grey water at an HRT of 12 hr and 1 day. This contradicts Otterpohl et al. (1999), who recommended that an activated sludge process should be avoided when treating grey water, due to risks posed by lack of nutrients. Akunna and Shepherd (2001) applied both an SBR and an RBC preceded by a one and two primary settlers, respectively. An SBR, in comparison with an RBC, is more resistant to variation in the inflow quality and quantity (Akunna and Shepherd, 2001), which is an important characteristic of grey water (Abu Ghunmi et al., 2008; Butler et al., 1995). Shine et al. (1998) stressed that the stable performance of the SBR, except for the SS, could not have been achieved without using an equalization basin. This was contradicted by Hernandez et al. (2007, 2008), who did not apply an equalization basin and still reported a stable performance of grey water treatment in an SBR. For posttreatment, an MF coped with the variation in the an SBR effluent and produced a stable effluent in terms of SS (Shin et al., 1998) (Tables 2 and 6).

3.3.3 ANAEROBIC BIOLOGICAL PROCESSES

A UASB treating grey water produced a stable effluent quality and sludge (Table 7) compared with a primary settling tank (Table 4; Elmitwalli and Otterpohl, 2007). However, Hernandez et al. (2008) reported that a UASB and SBR, when operated under the same conditions, produced the same amount of sludge. Apparently in their research the UASB excess sludge was not well stabilized. Table 7 reveals that the UASB capacity in the treatment

of grey water is limited, even with increase of the temperature and HRT. Furthermore, according to the variation in grey water temperature (Abu-Ghunmi et al., 2008; Eriksson et al., 2002), operating the UASB at 30°C as recommended by Elmitwalli and Otterpohl (2007) cannot be achieved throughout the whole operation period even with a proper insulation of UASB and connection pipes and installing it in the building cellar. Nevertheless, anaerobic pretreatment of grey water is recommended, particularly when grey water concentrations are high. The reasons are (a) that 74% of grey water pollutants are anaerobically biodegradable (Elmitwalli and Otterpohl, 2007; Zeeman et al., 2008); (b) the probable deficiency in the macronutrients, nitrogen, and phosphorus, to sustain microorganism's growth in aerobic treatment (Abu Ghunmi et al., 2008); (c) that anaerobic treatment could produce less and stable sludge that is easily dewatered; (d) that no energy is required for aeration; and (e) that methane is produced that can be used as energy source (Lettinga et al., 1980). Thus, pretreating grev water in an anaerobic unit reduces maintenance and operation cost of the overall treatment system. For example, Tandukar et al. (2007) reported pre- and posttreatment of domestic wastewater in a UASB and aerobic down-flow Hanging Sponge (DHS). The tested system was as efficient as an activated sludge system, more efficient in pathogen removal, produced 15 times less sludge, and was cost-effective. On the other hand, the removal efficiency of the anaerobic processes could be improved by incorporating filtration (e.g., AnB; Imura et al., 1995) or physicochemical processes (e.g., activated carbon; Cui and Ren, 2005).

3.4 Toward Optimal Treatment Systems for Grey Water

3.4.1 Selection Factors

Grey water treatment selection factors are the characteristics, the reuse requirements, the technology performance, energy demand and costs, and the geographical location. These factors are inherently interrelated and influence each other.

3.4.1.1 Characteristics and reuse requirements. Tables 2–7 show that the best achievable effluent quality is $<10 \pm 5$ mg BOD L⁻¹, $<30 \pm 10$ mg COD L⁻¹, $<15 \pm 5$ mg SS L⁻¹, turbidity < 2 NTU, TC <1000 CFU/100 mL, or FC or EC < 200 CFU/100 mL. This quality complies with the most conservative standards except for the pathogens, and is achieved by three types of processes. The first process is biological treatment that applies a long HRT and therefore a long SRT (e.g., CW with a 5–14 days HRT). The second process is the microfiltration or biofiltration with a relatively short HRT of 9.7 hr. The third process is physicochemical treatment, such as oxidation and coagulation. Grey water characteristics, COD fractions, biodegradability, and biodegradation rate under aerobic and anaerobic conditions are key factors in selection, design and operation of treatment systems. These factors need

detailed investigation. Tables 2–7 show N and P are not monitored in most of the studies but should be considered in the treatment and in the standards. The concentration of nitrogen in raw grey waters, except for that reported by Hernandez et al. (2008), is lower than the N standards for irrigation water in Jordan. The CW, operated at an HRT of 14 days (Table 3) and an SBR (Table 6) can reduce the N or the P to less than 1 mg L⁻¹, which is far below the irrigation standards in Jordan.

3.4.1.2 The Technology Performance. Tables 2–7 show that the detailed design criteria and the operational conditions of most of the tested systems are not reported. The performance of the technologies is not examined for seasonal variation nor under natural conditions such as the daily quality and quantity inflow variation. Furthermore, synthetic grey water and high process temperatures (e.g., 30°C) are used in some of the studies. It is concluded that the internal structure and the operational conditions, namely HRT and SRT, determine the performance of the physical and biological system.

Coarse sand and membrane filters have limited capacity in treating grey water (Pidou et al., 2007). Furthermore, Pidou et al. (2007) reported biological and extensive treatment technologies (CW) are effective in organic matter removal. Table 8 presents grey water treatment units and processes, the possibility of improving their performances considering grey water characteristics, and proposes HRT and SRT that can result in good effluent quality. Table 8 shows that the performance of different presented technologies, except for the coarse filter, can be improved in terms of COD, BOD, SS, and pathogens. All units and processes, except the UASB, primary settlers, and anaerobic biofilter, could be optimized to produce effluents with a COD, BOD, and SS content, complying with the most conservative standards. It must be noted that only membrane, ultra-, chem.-, and biofiltration units produce effluents that meet the highest achievable quality concerning pathogens. Tables 2-7 give no information about sludge. Table 8 gives estimates of sludge type and handling, based on the applied technology, physical, chemical or biological. Primary sludge production is higher than secondary sludge production, and anaerobic sludge production is considered to be lower than aerobic sludge production.

3.4.1.3 Energy demand, chemicals, and costs. Reported data for energy demand, chemical requirements, and costs are in general qualitative (Tables 2–7). Based on basic requirements to operate and maintain systems and on reported data, estimations of technology demand and costs are made (Table 8). In general the tested technologies demand energy for aeration and mixing. Flux permeation in MBR systems has the highest energy demand. Therefore, the energy demand list is topped by micro-, nano-, and ultramembrane filtration and biofiltration processes, followed by aerobic and physicochemical processes, and then coarse and sand filter, CW, and anaerobic processes. The chemicals are required as part of some treatments, such

TABLE 8. Grey Water T	reatment U	Jnits and P1	rocesses	: Compl	iancy with	the Stand	lards,	Technold	ogy D€	emands, and	d Costs		
		E	ffluent cor h the reus	npliances e standard	s			Technolc Exti	gy dema a units	inds:		Cost	
Treatment type	BOD, COD, and/or SS	Pathogens	Sludge	Energy	Chemicals	Land availability	Pre	Sludge handling	Post	Disinfection	Investment	Operational	Maintenance
Equalization, settling, and storage tank	+++++	+											
Filters:													
Coarse	+	+	Ч	×	*	*	*	* *	* *	* * *		*	*
Sand	++++	+	Ч	*	*	*	*	* *	*	* *		* *	*
MF	+++++	++++++	Ь	* *	* *	*	*	*	*	* *		* *	* *
UF	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	Ч	* *	*	*	* *	* *	*	*		* *	* *
Physicochemical Treatment:													
Coagulation	++++		Ч	* *	* * *	*		*				* *	*
Oxidation	· + · +		I	*	* * *	*			* *				
Adsorption	· + · +		д			*		* *				* * *	*
Modified Filters:	-												
VFSF	++++	+ +	Ч	*	*	* *	* *	* *		* *		* *	*
IVSF	+++++++++++++++++++++++++++++++++++++++	+++++	Ч	*	*	* *	* *	* *		* *		* *	*
SSrF	+++++++++++++++++++++++++++++++++++++++	++++	Ч	*	*	* *	*	*		* *		* *	*
HPSF	+++++++++++++++++++++++++++++++++++++++	+	s	*	*	*	* *	*		* *		*	*
HR-CW	+++++	+	s	*	*	* *	* *	*		* *		*	*
V-CW	+++++++++++++++++++++++++++++++++++++++	++	s	*	*	*	* *	×		* *		*	*
Planted SSrF	+++++	++	s	×	*	*	* *	×		* * *		*	*
RVFB	+++++++++++++++++++++++++++++++++++++++	+	s	*	*	*	* *	*		* *		*	*
GRWRS	++++	++	s	*	*	* *	* *	×		* * *		*	*
Modified Filters:													
BAF	+++	+	s	* *	*	*	*	*		***		* *	*
MBR	++++	++++++	S	***	*	*	* *	×		* *		* * *	* * *
M(F)BR	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	s	* *	*	*	* *	*		* *		* * *	* * *
Anaerobic Filter	++++	+	s	*	*	*	*	*		* *			
Bed Submerged Bioreactor	+++++++++++++++++++++++++++++++++++++++	+	s	*	*	×	*	*		* *		*	*
MCR	+++++	++++	s	* *	* *	*	* *	* *	* *	×		* *	* *
Grey													
Grey													
												(Continued	on next page)

	T _c effluent the re	echnology's compliances w euse standards	/ith			Tech	mology 1	Demands				-	
								Extra-U	Inits		Op	Cost Land erational Investi	nent
Treatment Types	BOD, COD, and/ or SS	Pathogens	Sludge	Energy	Chemicals	Land availability	Pre-	Sludge-handling	Post	Disinfection	Investment	Operational	Maintenance
Aerobic biol Aerobic	logical processe	S:											
Attached pro	ocesses:												
FBR	+++++	+	s	* *	*	×	*	*		* *		* *	*
RBC	++++	+++++	S	*	*	×	*	*		* *		* *	*
Suspended 1	orocesses:												
SBR	+++++	+	s	* *	*	×	*	*		* *		* *	*
Anaerobic													
Suspended 1	Drocesses:												
UASB	++	+	s	×	*	×	×	*	*	* *		*	×
Note. Efflu	ent complian	ces with the	reuse sta	ndards in	Table 2 ar	e the most c	onserva	ative standards re	ported	in the literatu	tre. The BOD), COD, SS, at	nd pathogen

TABLE 8. Grey Water Treatment Units and Processes: Compliancy with the Standards, Technology Demands, and Costs (Continued)

i. c values are not reported for all the tested system, therefore, the results are anticipated as follows: + = poor performance; ++ = performance can be improved but itcan not reach a high effluent quality; +++ = performance can be improved to reach a high effluent quality. P = primary; S = secondary. Technology demands/cost, II and the operational and maintenance cost are evaluated based on the technology demands, namely: * = no or low demand/cost; ** = medium demand/cost; *** high demand/cost. Note

as M(F)CR, adsorption, coagulation, oxidation, and disinfection, or for maintenance such as cleaning the membranes of MF and MBR. The operational and maintenance costs in Table 8 are evaluated based on energy demand, chemical requirements, and sludge type and handling. The MCR and MBR are the most costly, followed by aerobic units and last are the CWs, the filters, and the anaerobic units. All the units have a small footprint, except planted or not planted biological sand filters, which need, in comparison, more land, which might increase its capital costs.

3.4.2 Optimizing the Treatment Systems for Grey Water

Table 8 shows that for a minimum or zero primary sludge production, biological treatment is the best option. For minimum energy consumption, an anaerobic step followed by an aerobic step is recommended. Accordingly, filters, physicochemical and chemfilter units should be avoided as main units for treating grey water. To minimize energy consumption and operation and maintenance costs, the use of membrane biofilters is highly questionable in the biological process options. Table 8 shows the anaerobic options are anaerobic filter and UASB. The aerobic options are RBC, SBR, FB, or CW. The shorter HRT and the smaller footprint of the biological processes such as RBC, SBR, and FB have an advantage compared with CW (Pidou et al., 2007). However, to choose between the suggested options, the system performance under variable inflow and temperature conditions should be investigated. Furthermore, the available space and detailed costs information is required and for the CW option, it is necessary to consider the geographical location and climatic conditions as well. Table 8 shows that the selected processes treat COD, BOD, and SS to the permissible standards. Thus the anaerobic-aerobic system is efficient, simple, and affordable. Furthermore, to assure safe effluent, minimize possibility of pathogen regrowth in the treated effluent, a disinfection step is recommended. The disinfection techniques, according to the conducted studies, are $<0.2 \ \mu m$ MF, ultrafilters, $UV + TiO_2$, or chlorine/bromine disinfection. Nevertheless, grey water standards should be revised in order to have multicategory standards for the different use options.

4 CONCLUSION

The tested grey water treatment processes are not optimized. Some of the effluents do not comply with all reuse standards. Reuse standards should be critically evaluated and likely revised and classified according to the different use options and requirements. Considering sludge production, systems based only on physical removal should be avoided, as they produce masses of non-stabilized sludge. To save on energy requirements, an anaerobic–aerobic

process is recommended. For pathogen removal, a disinfection unit is required. Therefore, for efficient, simple, affordable treatment of grey water with safe effluent, a three-step system, consisting of anaerobic, aerobic, and disinfection units is recommended.

ACKNOWLEDGMENTS

The research on which this paper has been based was funded by the Dutch Ministry of Foreign Affairs (Nuffic).

NOMENCLATURE

AnBF	Anaerobic Biofilter
AP	Artificial Pond
BAF	Biological Aerated Filter
BOD	Biochemical Oxygen Demand
BSIRA	British Scientific Instrument Research Association
CF	Coarse Filter
CFU	Colony Forming Unit
Cl_2	Chlorine
COD	Chemical Oxygen Demand
col	Colloidal
CW	Constructed Wetlands
DHS	Down-flow Hanging Sponge
dis	dissolved
EB	Equalization Basin
E. coli	Escherichia coli
EPA	Environmental Protection Agency
FBR	Fluidized Bed Reactor
FC	Fecal Coliform
GRWRS	Green Roof Water Recycling System
GW	Grey Water
Н	Horizontal
HPSF	Horizontal-Flow Planted Soil Filer
HRT	Hydraulic Retention Time
IVPSF	Intermittent Vertical-Flow Planted Soil Filter
IVSF	Intermittent Vertical-Flow Soil Filter
Κ	Potassium
LAS	Linear Alkyl Benzene Sulfonates
MBR	Membrane Biological Reactor
MF	Membrane Filter
M(F)BR	Membrane (Fibrous) Biological Reactor

M(F)CR	Membrane Chemical Reactor
MRT	Maximum Retention Time
MWCO	Molecular-Weight Cutoff
Ν	Nitrogen
NTU	Nepthelometric Turbidity Unit
Р	Phosphorous
PCOR	Photocatalytic Oxidation Reactor
PFS	Polyferric Sulfate
PFST	Prefiltration Storage Tank
рН	-log [hydrogen ion concentration]
RBCs	Rotating Biological Contactors
RVFB	Recycled Vertical Flow Bioreactor
SAF	Submerged Aerated Filter
SB	Sedimentation Basin
SBF	Submerged Biofilters
SF	Sand Filter
SRT	Sludge Retention Time
SS	Suspended Solids
SSr	Subsurface
SSrF	Subsurface Filters
ST	Settling Tank
TC	Total Coliform
TF	Trickling Filter
TiO_2	Titanium Dioxide
Tkj	Total Kjeldahl nitrogen
TOC	Total Organic Carbon
TON	Threshold Odor Number
tot	Total
UF	Ultrafiltration
UV	Ultraviolet
V	Vertical
WHO	Word Health Organization

REFERENCES

- Abu Ghunmi, L., Zeeman, G., van Lier, J., and Fayyad, M. (2008). Quantitative and qualitative characteristics of grey water for reuse requirements and treatment alternatives: The case of Jordan. *Water Sci. Technol.*, 58, 1385–1396.
- Ahn, K., Song, J., and Cha, H. (1998). Application of tubular ceramic membranes for reuse of wastewater from buildings. *Water Sci. and Technol.*, 38, 373–382.
- Akunna J., and Shepherd, W. (2001) Comparison of RBC and SBR systems for the treatment of sewage from small communities. *Water and Environment Journal*, 15, 147–151.

- Al-Jayyousi, O. (2002). Focused environmental assessment of grey water reuse in Jordan. *Environ Eng Policy*, 3, 67–73.
- Al-Jayyousi, O. (2003). Grey water reuse: Towards sustainable water management. *Desalination*, 156, 181–192.
- Andersen, M., Kristensen, G., Brynjolf, M., and Grüttner, H. (2002). Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry. *Water Sci., and Technol.*, 46(4–5), 67–76.
- Arnell, N. (1999). Climate change and global water resources. *Global Environmental Change*, 9(1), 31–49.
- Bingley, E. (1996). Grey water reuse proposal in relation to the Palmyra Project. *Desalination*, 106, 371–375.
- Bouwer, H. (2000). Integrated water management: Emerging issues and challenges. *Agricultural Water Management*, 45, 217–228.
- Burrows, W., Schmidt, O., Carnevale, M., and Schaub, S. (1991). Nonpotable reuse: Development of health criteria and technologies for shower water recycle. *Water. Sci. Technol.*, 24(9), 81–88.
- Butler, D., Friedler, E., and Gatt, K. (1995). Characterizing the quantity and quality of domestic wastewater inflow. *Water Sci. Water Sci.*, 31(7), 13–24.
- China. (2002). *The reuse of urban recycling water-water quality standard for urban miscellaneous water consumption*. GB/T 18920-2002. http://www.wastewater. cn19-1-2009 (accessed January 6, 2011).
- Christova-Boal, D., Eden, R., and McFarlane, S. (1995). An investigation into grey water reuse for urban residential properties. *Desalination*, 106, 391–397.
- Crook, J. (1991). Quality criteria for reclaimed water. Water Sci. Technol., 24(9), 109–115.
- Cui, F., and Ren, G. (2005, May). *Pilot study of process of bathing wastewater treatment for reuse*. Paper presented at 2005 IWA conference: Future of Urban Wastewater system—Decentralization and Reuse, Xi'an, China.
- Dallas, S., and Ho, G. (2005). Subsurface flow reedbeds using alternative media for the treatment of domestic grey water in Monteverde, Costa Rica, Central America. *Water Sci. Technol.*, 51(10), 119–128.
- Diaper, C., Dixon, A., Bulter, D., Fewkes, A., Parsons, S. A., Strathern, M., Stephenson, T., and Stutt, J. (2001). Small scale water recycling systems-risk assessment and modelling. *Water Sci. Technol.*, 34(10), 83–90.
- Dixon A., Butler, D., Fewkes, A., and Robinson, M. (1999). Measurement and modelling of quality changes in stored untreated grey water. *Urban Water*, 1, 293–306.
- Elmitwalli, T., and Otterpohl, R. (2007). Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor. *Water Research*, 41, 1379–1387.
- Eriksson, E., Auffarth, K., Henze, M., and Ledin A. (2002). Characteristics of grey water. *Urban Water*, 4, 85–104.
- Falkenmark, M. (1990). Global water issues confronting humanity. *Journal of Peace and Research*, 27, 177–190.
- Fittschen I., and Niemczynowicz, J. (1997). Experiences with dry sanitation and grey water treatment in the ecovillage Toarp, Sweden. *Water Sci. Technol.*, 35(9), 161–170.

- Fletcher, H., and Judd, M. (2007). The cost of a package plant membrane bioreactor. *Water Research*, 41, 2627–2635.
- Friedler, E., and Hadari, M. (2006). Economic feasibility of on-site grey water reuse multistory buildings. *Desalination*, 190, 221–234.
- Friedler, E., Kovalio, R., and Galil, N. (2005). On-site grey water treatment and reuse in multistory buildings. *Water Sci. Technol.*, 51(10), 187–194.
- Friedler, E., Kovalio, R., and Ben-Zvi, A. (2006). Comparative study of the microbial quality of grey water treated by three on-site treatment systems. *Environmental Technology*, 27, 653–663.
- Garcia, M., Campos, E., Sanchez-Leal, J., and Bibosa, I. (1999). Effect of the alkyl chain length on the anaerobic biodegradability and toxicity of quaternary ammonium based surfactants. *Chemosphere*, 38, 3413–3483.
- Gross, A., Kaplan, D., and Bake, K. (2007a) Removal of chemical and microbiological contaminants from domestic grey water using a recycled vertical flow bioreactor (RVFB). *Ecological Engineering*, 31, 107–114.
- Gross, A., Shmueli, O., Ronen, Z., and Raveh E. (2007b). Recycled vertical flow constructed wetland (RVFCW)—a novel method of recycling grey water for irrigation in small communities and households. *Chemosphere*, 66, 916–923.
- Gulyas, H., and Raj Gajurel, D. (2004). *Ecological sanitation*. E-Learning Course funded by EMWATER-EU project: Efficient Management of wastewater. Hamburg, Germany: Institute of Wastewater Management Hamburg University of Technology Hamburg, Germany. Module C. http://www.emwater. org/activities/e-learning.htm (accessed September, 16 2008).
- Hegemann, W. (1993). Project C2-wastewater treatment. In: Integrated approach to water in Berlins Kreuzberg district, block 6 Project documentation and results of research phase II (1990–1993). Prepared on behalf of the Senate Department for Construction and Housing, Berlin (Unpublished data), (cited by Nolde, 1999).
- Hernandez, L., Zeeman, G., Temmink, H., and Buisman, C. (2007). Characterization and biological treatment of grey water. *Water Sci. Technol.*, 56, 193–200.
- Hernandez, L., Zeeman, G., Temmink, H., Marques, A., and Buisman, C. (2008, May). Comparison of three systems for biological grey water treatment. Paper presented at IWA Conference on Sanitation Challenges, Wageningen, The Netherlands.
- Hills, S., Smith, P., Hardy, P., and Briks, R. (2001). Water recycling at the millennium dome. *Water Sci. Technol.*, 43, 287–294.
- Holden, B., and Ward, M. (1999, December). *An overview of domestic and commercial re-use of water*. Paper presented at the IQPC conference on water recycling an effluent reuse, Copthrone Effingham Park, London, England.
- Imura, M., Sato, Y., Inamori, Y., and Sudo, R. (1995). Development of a high efficiency household biofilm reactor. *Water Sci. Technol.*, 31(9), 163–171.
- Itayama, T., Kiji, M., Suetsugu, A., Tanaka, N., and Saito, T. (2006). On site experiments of the slanted soil treatment systems for domestic grey water. *Water Sci. Technol.*, 53, 193–201.
- Jefferson, B., Laine, A., Parsons, S., Stephenson, T., and Judd, S. (1999). Technologies for domestic wastewater recycling. *Urban Water*, 1, 285–292.
- Jefferson, B., Laine, A., Parsons, S., Stephenson, T., and Judd, S. (2000). Membrane bioreactors and their role in wastewater reuse. *Water Sci. Technol.*, 41, 197–204.

- Jefferson, B., Laine, A., Parsons, S., Stephenson, T., and Judd, S. (2001). Advanced biological unit processes for domestic water recycling. *Water Sci. Technol.*, 43, 211–218.
- Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., and Judd, S. (2004). Grey water characterization and its impact on the selection and operation of technologies for urban reuse. *Water Sci. Technol.*, 50, 157–164.
- Jordanian Ministry of Water. (2000). *Jordanian standards for reuse reclaimed wastewaters* JS893 (JSRRW). Amman, Jordan: Jordanian Ministry of Water.
- Kayaalp, N. (1996). Regulatory framework in south Australia and reclaimed water reuse options and possibilities. *Desalination*, 106, 317–322.
- Kujawa-Roeleveld, K., and Zeeman, G. (2006). Anaerobic treatment in decentralised and source-separation-based sanitation concepts. *Reviews in Environmental Science and Bio/Technolog.*, 5(1), 15–139.
- Lesjean, B., and Gnirss, R. (2006). Grey water treamtne with a membrane bioreactor operated at low SRT and HRT. *Desalination*, 199, 432–334.
- Lettinga, G., van Velsin, A., Hobma, S., De Zeeuw, W., and Klapwijk, A. (1980). Use of upflow sludge blanket (USB) reactor concept for biological treatment, especially for anaerobic treatment. *Biotechnology and Bioengineering*, 22, 699–734.
- Li, Z., Gulyas, H., Jahn, M., Gajurel, D., and Otterphohl, R. (2003). Grey water treatment by constructed wetlands in combination with TiO₂-based photocatalytic oxidation for suburban and rural areas without sewer system. *Water Sci. Technol.*, 48(11–12), 101–106.
- Matthew, J., and Malcolm, N. (2000). Review: The biodegradation of surfactants in the environment. *Biochimica et Biophysica Acta (BBA)—Biomembranes*, 1508, 235–251.
- Melin T., Jefferson, B., Bixio, D., Thoeye, C., De Wilde, W., De Koning, J., Van Der Graaf, J., and Wintgens, T. (2006). Membrane bioreactor technology for wastewater treatment and reuse. *Desalination*, 187, 271–282.
- Merz, C., Scheumann, R., El Hamouri B., and Kraume M. (2007). Membrane bioreactor technology for the treatment of grey water from a sports and leisure club. *Desalination*, 215(1–3) 37–43.
- Metcalf & Edd. (2003). Wastewater engineering: treatment, disposal, reuse. 3rd edition, McGraw-Hill, New York.
- Nghiem L., Oschmann, N., and Schäfer, A. (2006). Fouling in grey water recycling by direct ultrafiltration. *Desalination*, 187(1–3), 183–290.
- Nolde, E. (1999). Grey water reuse systems for toilet flushing in multistory buildings over ten years experience in Berlin. *Urban Water*, 1, 275–284.
- Nolde, E., and Dott, W. (1992). Experimental housing and urban planning research concept block 103-gray water projects in Berlin-Kreuzberg, Prepared on behalf of the Senate Department for Constructing and Housing, Berlin (Unpublished data), (cited by Nolde, 1999).
- Ogoshi, M., Suzuki, Y., and Asano, T. (2001). Water reuse in Japan. Water Sci. Technol., 43(10), 17–23.
- Okun, D. (2000). Water reclamation and unrestricted non potable reuse: A new tool in urban water management. *Annual Review Public Health*, 21, 223–45.
- Otterpohl, R., Albold, A., and Oldenburg, M. (1999). Source control in urban sanitation and waste management: Ten systems with reuse of resources. *Water Sci. Technol.*, 39, 153–160.

- Otterpohl, R., Braun, U., and Oldenburg, M. (2003). Innovative technologies for decentralized water and wastewater and biowaste management in urban and preurban areas. *Water Sci. Technol.*, 48(11–12), 23–32.
- Parker, J., and Frost, S. (2000). Environmental health aspects of coastal bathing water standards in the UK. *Environmental Management and Health*, 11, 447–454. http://www.mcbup.com/research_registers/emh.asp(accessedJanuary19,2009).
- Pidou, M., Memon, F., Stephenson, T., Jefferson, B., and Jeffrey, P. (2007). Grey water recycling: Treatment options and applications. *Proceedings of the Institution of Civil Engineers Engineering Sustainability*, 160, 119–131.
- Ramon, G., Green, M., Semiat, R., and Dosortez, C. (2004). Low strength grey water characterization and treatment by direct membrane filtration. *Desalination*, 170, 241–250.
- Rivero, M., Parsons, S., Jeffrey, P., Pidou, M., and Jefferson, B. (2006). Membrane Chemical Reactor (MCR) combining photoctalysis and microfiltration for grey water treatment. *Water Sci. Technol.*, 53, 173–180.
- Rose, J., Sun, G., Gerba, C., and Sinclair, N. (1991). Microbial quality and persistence of enteric pathogens in grey water from various household sources. *Water Research*, 25(1), 37–42.
- Shin, H., Lee, S., Seo, S., Kim, G., Lim, K., and Song, J. (1998). Pilot-Scale SBR and MF operation for the removal of organic compounds form grey water. *Water Sci. Technol.*, 38(6), 79–88.
- Shrestha, R., Haberl, R., and Laber, J. (2001a). Construed wetlands technology transfer to Nepal. *Water Sci. Technol.*, 43, 345–350.
- Shrestha, R., Haberl, R., Laber, J., Manandhar, R., and Mader. J. (2001b). Application of construed wetlands for wastewater treatment in Nepal. *Water Sci. Technol.*, 44, 381–386.
- Siegrist, H., Witt, M., and Boyle, W. (1976). Characteristics of rural household wastewater. *Environmental Engineering Division*, 102(EE3), 533–548.
- Surendran, S., and Wheatley, A. (1999, April). Grey and roof water reclamation at large institutions—Loughborough experiences. Paper presented at Water Recycling and Effluent Re-Use Conference. London, England.
- Tandukar, M., Ohashi, A., and Harada, H. (2007). Performance comparison of a pilotscale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. *Water Research*, 41, 2697–2705.
- Tay, J.-H., and Chui, P.-C. (1991). Reclaimed wastewater for industrial application. *Water Sci. Technol.*, 24, 153–160.
- U.S. Environmental Protection Agency. (2004). Guidelines for water reuse. U.S. Environmental Protection Agency Report No. EPA/625/R-04/108/September-2004. Washington, DC: U.S. Environmental Protection Agency. http://www.epa. gov/ORD/NRMRL/pubs/625r04108/625r04108.pdf (accessed January 19, 2009).
- Winward, G., Avery, L., Frazer-Williams, R., Pidou, M., Jeffrey, P., Stephenson, T., and Jefferson, B. (2008). A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. *Ecological Engineering*, 32, 187–197.
- World Health Organization. (2001). *Water quality: Guidelines, standards and health*. http://www.who.int/water_sanitation_health/dwq/iwachap2.pdf (accessed January 19, 2009).

- World Health Organziation. (2006). *Guidelines for the safe sue of wastewater, excreta and grey water. Volume 4: Excreta and grey water use in agriculture.* Geneva, Switzerland: World Health Organization Press.
- Zeeman, G., Kujawa, K., de Mes, T., Hernandez, L., de Graff, M., Abu Ghunmi, L., Mels, A., Meulman, B., Temmink, H., Buisman, C., van Lier, J., and Lettinga, G. (2008). Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). *Water Sci. Technol.*, 57, 1207–1212.
- Zeeman, G., and Lettinga, G. (1999). The role of anaerobic digestion of domestic sewage closing the water and nutrients cycle at community level. *Water Sci., and Technol.*, 39, 187–194.