

WASTEWATER OPERATOR'S FORMULA SHEET

CONVERSION FACTORS							
π	=	$\pi \approx 3.14$	1%	=	10,000 mg/L	1 liter (L)	= 1,000 milliliters (ml) & [1.0 ml water = 1.0 gm]
1 cubic foot (ft ³)	=	7.48 gallons				1 pound	= 0.454 kilograms (kg)
1 gallon	=	8.34 pounds (lbs) of water				1 MGD	= 1,000,000 gallons/day (gpd)
1 acre	=	43,560 square feet (ft ²)					= 694.4 gallons/minute (gpm)
1 PSI	=	2.31 feet of water				GPD	= (gpm)(1,440 minutes/day)
1 cubic foot/second (CFS) or (ft ³ /sec)	=	7.48 gallons/second (gps)			A change of 1 ° C	= 1.8 ° F change	
	=	450 gallons/minute (gpm)			° C	= [(° F)-32][5/9]	
	=	646,272 gallons/day (gpd)			° F	= [(9/5)(° C)]+32	
specific gravity	=	Ratio of a substance's mass to water (water sp.gr. = 1.0 g/ml)			1 ton	= 2,000 pounds (lbs)	

COMMONLY USED FORMULAS							
[pounds formula] Daily Loading, (lbs/day)	=	(Concentration, mg/L)(Flow, MGD)(8.34, lbs/gal)	Percent (%) Removal	=	$\left[\frac{(\text{in} - \text{out})}{\text{in}} \right] [100]$		
Population Equivalent, (PE)	=	$\frac{\text{Daily Loading, lbs}}{(\text{PE factor, daily lbs/person})}$	Detention Time, (hrs)	=	$\frac{(\text{Tank Volume, ft}^3)(7.48 \text{ gal./ft}^3)(24 \text{ hrs/day})}{\text{Flow (gallons/day)}}$		
Daily Loading, (lbs/day)	=	(PE)(PE Factor, daily lbs/person)	Pipe Slope (grade)	=	$\frac{\text{rise or drop}}{\text{run}} = \frac{\text{difference in height}}{\text{difference in length}}$		
Volume Rectangular Tank, (gallons)	=	(L, ft)(W, ft)(H, ft)(7.48, gal/ft ³)	Chlorine Dose, (mg/L)	=	(Chlorine Demand, mg/L) + (Chlorine Residual, mg/L)		
Volume Circular Tank, (gallons)	=	(π)(R ² , ft)(H, ft)(7.48, gal/ft ³) or (0.785)(D ² , ft)(H, ft)(7.48, gal/ft ³)	Dosage, (mg/L)	=	$\frac{(\text{chemical feed, lbs/day})}{(\text{flow, MGD})(8.34 \text{ lbs/gal})}$		
Return Sludge Rate, (MGD)	=	$\frac{(\text{Total Flow, MGD})(\text{Settleable Solids, \%})}{100\%}$	Decimal Fraction	=	$\frac{(\text{percent})}{100}$		

CLARIFIER & SETTLING									
(SOR) Surface Settling (Overflow) Rate, (gal/day/ft ²)		=	$\frac{\text{Flow, gpd}}{\text{Surface Area, ft}^2}$		(WOR) Weir Overflow Rate, (gal/day/ft)		= $\frac{\text{Flow, gpd}}{\text{Weir Length, ft}}$		
Sludge Solids, (lbs)		=	$(\text{Sludge Volume, gal})(\% \text{ Solids}/100)(8.34 \text{ lbs/gal})$						
Raw Sludge (RAS) Pumping, (gpm)		=	$\frac{(\text{Settleable Solids, ml/L})(\text{Plant Flow, gpm})}{1000 \text{ ml/L}}$						
Solids Loading, (lbs/ft ²)		=	$\frac{(\text{Plant Flow, MGD} + \text{RAS Flow, MGD})(\text{MLSS, mg/L})(8.34 \text{ lbs/gal})}{\text{Clarifier Surface Area, ft}^2}$						

SLUDGE							
Total Solids (%)	=	$\frac{[\text{weight of dry (oven) sludge}][100]}{\text{weight of wet sludge}}$	Digester Loading Rate, (lbs/day/ft ³)	=	$\frac{(\text{Volatile Solids added, lb/day})}{\text{Digester Volume, ft}^3}$		
Volatile Solids (%)	=	$\frac{[\text{weight of material lost by burning}][100]}{\text{weight of dry (oven) sludge}}$	Composting Mixture Moisture (%)	=	$\frac{\left[(\text{Sludge, lb}) \left(\frac{\text{moisture\%}}{100\%} \right) \right] + \left[(\text{Compost, lb}) \left(\frac{\text{moisture\%}}{100\%} \right) \right]}{(\text{Sludge, lb}) + (\text{Compost, lb})} [100\%]$		

WASTEWATER OPERATOR'S FORMULA SHEET

ACTIVATED SLUDGE				
(BOD) load on aeration tank, (lbs BOD/1,000 ft ³ /day)	=	BOD, lbs/day (Volume of Aeration Tank, ft ³)/1,000	(SVI) Sludge Volume Index, (ml/gm)	= (Settleometer reading in 30 minutes, ml)(1,000) (MLSS, mg/L)
(MLSS) Mixed Liquor Suspended Solids under aeration, (lbs)	=	(MLSS, mg/L)(8.34 lbs/gal)(Vol, MGD)	(MCRT) Mean Cell Residence Time, (days)	= (Aeration MLSS, lbs) + (2° clarifier blanket MLSS, lbs) (MLSS wasted, lbs/day) + (SS loss in effluent, lbs/day)
(SA) Sludge Age, (days)	=	Aeration Tank SS, lbs Aeration Tank influent SS, lbs/day	(SA) Sludge Age, (days)	= (MLSS, mg/L)(8.34 lbs/gal)(Vol. of tank, MG) (Influent SS, mg/L)(8.34 lbs/gal)(Flow, MGD)
(F/M) Food to Microorganism Ratio	=	Aeration Tank influent BOD, lbs/day Aeration Tank MLVSS, lbs	(F/M) Food to Microorganism Ratio	= (BOD, mg/L)(8.34 lbs/gal)(Flow, MGD) (MLVSS, mg/L) (8.34 lbs/gal)(Vol. of tank, MG)
(OUR) Oxygen Uptake Rate, (mg/L/hr)	=	(Initial DO, mg/L) - (Final DO, mg/L) (Duration of Measurement, min)(60 min/hr)	(RR) Respiration Rate, (mg/hr/g)	= (Oxygen uptake rate, mg/L/hr)(1,000 mg/g) (MLSS, mg/L)

WASTEWATER LAGOONS or STABILIZATION PONDS				
Lagoon or Pond Side Slope	=	Run Rise ; example 3:1 = $\frac{3 \text{ ft. Horizontal}}{1 \text{ ft. Vertical}}$	Daily Rise (inches)	= $\frac{(\text{Flow, gal/day})(\text{Design Operating Depth, inches})}{\text{Volume of Pond, gal}}$
Daily Volume of Pond Discharge, (gallons/day)	=	(Drop in Pond, ft/day)(Average Surface Area, acres)(325,851 gal/acre-ft)		
Volume of a Pond, (gallon)	=	(Average surface area, ft ²)(design operating depth, ft)(7.48 gal/ft ³)		
Average Surface Area, (ft ²)	=	$\frac{(\text{Top Area, ft}^2) + (\text{Bottom Area, ft}^2)}{2}$	Bottom Area, ft ²	= (Bottom Length, ft)(Bottom Width, ft)
			Bottom Length, ft	= (Top Length, ft) - [(2)(side slope)(depth, ft)]
			Bottom Width, ft	= (Top Width, ft) - [(2)(side slope)(depth, ft)]
Organic Loading into Aerated Lagoon (lbs/1,000 ft ³ /day)	=	Influent BOD, lbs/day Lagoon Volume, ft ³ /1,000	Organic Loading on Stabilization Pond, (lbs/acre/day)	= $\frac{\text{Influent BOD, lbs/day}}{\text{Total surface area of pond(s), acres}}$

LAND APPLICATION				
Required Land, (acres)	=	Total Weight of Sludge, tons/year Limit, tons/acre	Sludge Application, (dry lbs)	= (Sludge, Gal.)(8.34 lbs/gal)(% Solids in Sludge/100)

FLOW				
Flow Rate	=	Volume Time ; example $\frac{\text{cubic feet}}{\text{second}}$, $\frac{\text{gallons}}{\text{minute}}$	Flow (pumping) Rate	= $\frac{(\text{Volume Pumped})}{(\text{Time})}$
Velocity	=	Distance Time ; example $\frac{\text{miles}}{\text{hours}}$, $\frac{\text{feet}}{\text{minutes}}$, $\frac{\text{feet}}{\text{seconds}}$	Q (flow)	= (Velocity)(Cross Sectional Area)
Volume, (gpm)	=	(ft ³ /second)(60 seconds/minute)(7.48 gal/ft ³)	Volume pumped, (gpm)	= $\frac{(\pi)(R^2, \text{ in}^2)(H, \text{ in})(\text{RPM})}{231 \text{ in}^3/\text{gal}}$
	=	(volume displaced by piston, in ³ /stroke) (RPM) 231 in ³ /gal		

WASTEWATER OPERATOR'S FORMULA SHEET

PUMPS						
Q = Flow, gpm	H = Total Dynamic Head, ft.		E_p = Pump Efficiency, as a decimal	E_m = Motor Efficiency, as a decimal		
Water HP	=	$\frac{(Q)(H)}{(3,960)}$				
Brake HP	=	$\frac{(Q)(H)}{(3,960)(E_p)}$	=	$\frac{\text{Water HP}}{E_p}$		
Motor HP	=	$\frac{(Q)(H)}{(3,960)(E_p)(E_m)}$	=	$\frac{\text{Water HP}}{(E_p)(E_m)}$	=	$\frac{\text{Brake HP}}{E_m}$
Cost, (\$/day)	=	$(\text{Motor HP})(0.746 \text{ kW/HP})(\text{Operating Time, hrs})(\$/\text{kWh})$				
Flow, (gpm)	=	$(0.785)(\text{Bore, ft}^2)(\text{Stroke, ft})(7.48 \text{ gal/ft}^3)(\text{strokes/minute})$				
Flow, (gallons)	=	$(0.785)(\text{Bore, ft}^2)(\text{Stroke, ft})(7.48 \text{ gal/ft}^3)(\text{strokes/minute})(\text{Pumping Time, minutes})$				
Chemical Feed Pumps, (gpd)	=	$\frac{\left(\frac{\text{ml}}{\text{min}}\right)(1,440 \text{ min/day})}{(1,000 \text{ ml/L})(3.785 \text{ L/gal})}$				
Chemical Feed Rate, (ml/min)	=	$\frac{\left(\frac{\text{gal}}{\text{day}}\right)(1,000 \text{ ml/L})(3.785 \text{ L/gal})}{(1,440 \text{ min/day})}$				
Percent (%) of Chemical in Solution from Dry Stock	=	$\frac{\text{Part}}{\text{Whole}}$	=	$\left[\frac{\text{Dry Chemicals, lbs}}{[(\text{Volume water, gal})(8.34 \text{ lbs/gal})] + [\text{Dry Chemicals/lbs}]} \right] [100]$	$\text{Chemical, g} + \text{Water, g} = \text{Solution, g}$	
Mixture Strength (%)	=	$(\text{Vol.1})(\text{Conc.1}) = (\text{Vol.2})(\text{Conc.2})$ & $(\text{Vol.1})(\text{Conc.1}) + (\text{Vol.2})(\text{Conc.2}) = (\text{Vol.3})(\text{Conc.3})$				

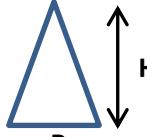
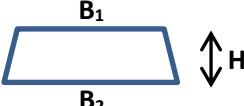
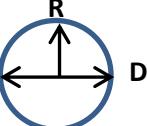
LABORATORY RESULTS					
mg/L	=	$\frac{(g)(1,000\text{mg/g})(1,000\text{ml/L})}{(\text{sample, ml})}$	=	ppm	$\% \text{ Solids} = \frac{(\text{MLSS, mg/L})}{(10,000 \text{ mg/L/1\%})}$
(BOD) unseeded, (mg/L)	=	$[(\text{Initial DO, mg/L}) - (\text{Final DO, mg/L})] \left(\frac{\text{Bottle Vol, ml}}{\text{Sample Vol, ml}} \right)$	=	Seed Correction Formula	$= \frac{(\text{Initial DO, mg/L}) - (\text{Final DO, mg/L})}{\text{Seed used, ml}}$
(BOD) seeded, (mg/L)	=	$\left\{ [(\text{Initial DO, mg/L}) - (\text{Final DO, mg/L})] - [(\text{Seed, ml})(\text{Seed correction, mg/L/ml})] \right\} \left(\frac{\text{Bottle Vol, ml}}{\text{Sample Vol, ml}} \right)$			
(TS) Total Solids, (mg/L)	=	$\frac{(\text{Dish Residue, mg})(1,000 \text{ ml/L})}{(\text{Sample, ml})}$	$(\text{VS}) \text{ Volatile Solids, (mg/L)}$	=	$\left(\frac{[(\text{before burning, g}) - (\text{after, g})][1000 \text{ mg/g}]}{(\text{Sample, ml})(\text{L}/1000 \text{ ml})} \right)$
(TSS) Total Suspended Solids, (mg/L)	=	$\frac{(\text{Dry Filtered Solids, mg})}{(\text{Sample, ml})(1 \text{ L}/1,000 \text{ ml})}$	$(\% \text{ VS}) \text{ Volatile Solids}$	=	$\left(\frac{\text{VS, g}}{\text{TS, g}} \right) (100)$
(TSS) Total Suspended Solids, (mg/L)	=	$\frac{[(\text{Dried Solids & Filter Paper, g}) - (\text{F. Paper, g})][1,000 \text{ mg/g}]}{(\text{Sample, ml})(\text{L}/1000 \text{ ml})}$	$(\text{VSS}) \text{ Volatile Suspended Solids, (mg/L)}$	=	$\frac{(\text{VSS, g})(1,000,000)}{(\text{Sample Vol., ml})}$
(F/M) Food to Microorganism Ratio	=	$\frac{(\text{BOD, mg/L})(8.34 \text{ lbs/gal})(\text{Flow, MGD})}{(\text{MLVSS, mg/L})(8.34 \text{ lbs/gal})(\text{Vol. of tank, MG})}$	Geometric Mean	=	$\text{Antilog} \left[\frac{(\text{Sum of } \log_{10} \text{ of all samples})}{(\text{Number of Samples})} \right]$

WASTEWATER OPERATOR'S FORMULA SHEET

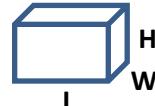
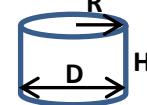
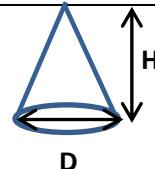
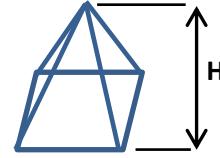
ANAEROBIC DIGESTERS				
Volatile Solids Loading, (lbs VS/day/ ft ³)	=	Feed Sludge VS, lbs/day Digester Volume, ft ³	Detention Time, (days)	= $\frac{\text{Digester Volume, gal}}{\text{Sludge Feed, gpd}}$
Volatile Solids Reduced, (%)	=	$\left[\frac{(\text{VS in} - \text{VS out})}{(\text{VS in}) - [(\text{VS in})(\text{VS out})]} \right] [100]$	VS Loading, (lbs/ft ³)	= $\frac{\text{VSS influent, lbs}}{\text{Digester Volume, ft}^3}$

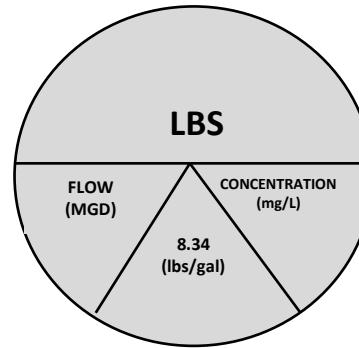
ROTATING BIOLOGICAL CONTACTORS				
Hydraulic Loading Rate, (GPM/ft ²)	=	GPM Media Surface Area, ft ²	Hydraulic Loading Rate, (GPD/ft ²)	= $\frac{\text{Total Flow including recirculation, GPD}}{\text{Media Surface Area, ft}^2}$
Organic BOD Loading Rate, (lbs/1,000 ft ³ /day)	=	Soluble BOD applied, lbs/day Media Surface Area, ft ² /1,000	Soluble BOD applied, (lbs/day)	= $(\text{Soluble BOD, mg/L})(\text{Flow, MGD})(8.34, \text{ lbs/gal})$
Soluble BOD, (mg/L)	=	(Total BOD, mg/L) – (Suspended BOD, mg/L)		


OXIDATION DITCHES				
(F/M) Food to Microorganism Ratio	=	BOD, lbs/day MLVSS, lbs	= $\frac{(\text{BOD, mg/L})(8.34 \text{ lbs/gal})(\text{Flow, MGD})}{(\text{MLVSS, mg/L})(8.34 \text{ lbs/gal})(\text{Ditch Vol., MG})}$	
BOD Loading Rate, (lbs/1,000 ft ³ /day)	=	BOD, lbs/day (Ditch Vol., ft ³)/1000	Ditch Detention Time, (hours)	= $\frac{(\text{Ditch Volume, MG})(24 \text{ hours/day})}{\text{Flow, MGD}}$
(SA) Sludge Age, (days)	=	Solids under Aeration, lbs Solids added, lbs/day	Aeration Solids, (lbs) Solids added, (lbs/day)	= $(\text{MLSS, mg/L})(\text{Ditch Volume, MG})(8.34, \text{ lbs/gal})$ = $(\text{Inf SS, mg/L})(\text{Flow, MGD})(8.34, \text{ lbs/gal})$
Ditch Volume, ft ³	=	(Total Length, ft)(Area, ft ²)	(Total Length, ft)	= $[(2)(\pi)(\text{radius, ft})] + [(2)(\text{straight length, ft})]$
			(Area, ft ²)	= $\frac{[(\text{width bottom,ft}) + (\text{width top,ft})]}{2} [\text{depth, ft}]$




TERTIARY FILTRATION				
Filter Flow, (gpm)	=	(Filter Area, ft ²)(Filter Rate, gpm/ft ²)		
Filter Backwash Volume, (gal)	=	(Filter Area, ft ²)(Backwash Flow, gpm)(Time, min.)		
Filter Backwash Flow, (gpm)	=	(Filter Area, ft ²)(rise or fall, ft/min.)(7.48 gal/ft ³)		
Filter Backwash Rate, (gpm/ft ²)	=	(Backwash Flow Rate, gpm) (Filter Area, ft ²)		

WATERWAYS DISCHARGE				
Diluted Concentration, (mg/L)	=	$\frac{[(\text{Stream Conc.}_1, \text{ mg/L})(\text{Stream Flow}_1, \text{ MGD})] + [(\text{Stream Conc.}_2, \text{ mg/L})(\text{Stream Flow}_2, \text{ MGD})]}{(\text{Stream Flow}_1, \text{ MGD}) + (\text{Stream Flow}_2, \text{ MGD})}$		





WASTEWATER OPERATOR'S FORMULA SHEET


CALCULATIONS OF PERIMETERS*		
Rectangles or Squares (P)	=	$S_1 + S_2 + S_3 + S_4$
Circles Circumference (C)	=	πD $\pi(2R)$
Other Plane Figures (P)	=	Sum of all sides

CALCULATIONS OF AREAS*		
Square or Rectangle (A)	=	$(L)(W)$
Triangle (A)	=	$\frac{(B)(H)}{2}$
Trapezoid (A)	=	$\left[\frac{(B_1)+(B_2)}{2} \right] [H]$
Circle (A)	=	$(\pi)(R^2)$ or $(0.785)(D^2)$ or $\frac{(\pi)(D^2)}{4}$

*EXAMPLE UNITS

Perimeter: yd, ft, in
 Area: yd^2, ft^2, in^2
 Volume: yd^3, ft^3, in^3

CALCULATIONS OF VOLUMES*		
Rectangular solids (V)	=	$(L)(W)(H)$
Cylinder (V)	=	$(\pi)(R^2)(H)$ or $(0.785)(D^2)(H)$ or $\frac{(\pi)(D^2)(H)}{4}$
Cones (V)	=	$\frac{(\pi)(R^2)(H)}{3}$ or $\frac{(0.785)(D^2)(H)}{3}$
Pyramids (V)	=	$\frac{(A)(H)}{3}$, (A = area of base)

